Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Vet Sci ; 8: 764570, 2021.
Article in English | MEDLINE | ID: mdl-34957280

ABSTRACT

Heart disease is a leading cause of death among cats and dogs. Vertebral heart scale (VHS) is one tool to quantify radiographic cardiac enlargement and to predict the occurrence of congestive heart failure. The aim of this study was to evaluate the performance of artificial intelligence (AI) performing VHS measurements when compared with two board-certified specialists. Ground truth consisted of the average of constituent VHS measurements performed by board-certified specialists. Thirty canine and 30 feline thoracic lateral radiographs were evaluated by each operator, using two different methods for determination of the cardiac short axis on dogs' radiographs: the original approach published by Buchanan and the modified approach proposed by the EPIC trial authors, and only Buchanan's method for cats' radiographs. Overall, the VHS calculated by the AI, radiologist, and cardiologist had a high degree of agreement in both canine and feline patients (intraclass correlation coefficient (ICC) = 0.998). In canine patients, when comparing methods used to calculate VHS by specialists, there was also a high degree of agreement (ICC = 0.999). When evaluating specifically the results of the AI VHS vs. the two specialists' readings, the agreement was excellent for both canine (ICC = 0.998) and feline radiographs (ICC = 0.998). Performance of AI trained to locate VHS reference points agreed with manual calculation by specialists in both cats and dogs. Such a computer-aided technique might be an important asset for veterinarians in general practice to limit interobserver variability and obtain more comparable VHS reading over time.

2.
Vet Radiol Ultrasound ; 61(6): 619-627, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32996208

ABSTRACT

To date, deep learning technologies have provided powerful decision support systems to radiologists in human medicine. The aims of this retrospective, exploratory study were to develop and describe an artificial intelligence able to screen thoracic radiographs for primary thoracic lesions in feline and canine patients. Three deep learning networks using three different pretraining strategies to predict 15 types of primary thoracic lesions were created (including tracheal collapse, left atrial enlargement, alveolar pattern, pneumothorax, and pulmonary mass). Upon completion of pretraining, the algorithms were provided with over 22 000 thoracic veterinary radiographs for specific training. All radiographs had a report created by a board-certified veterinary radiologist used as the gold standard. The performances of all three networks were compared to one another. An additional 120 radiographs were then evaluated by three types of observers: the best performing network, veterinarians, and veterinarians aided by the network. The error rates for each of the observers was calculated as an overall and for the 15 labels and were compared using a McNemar's test. The overall error rate of the network was significantly better than the overall error rate of the veterinarians or the veterinarians aided by the network (10.7% vs 16.8% vs17.2%, P = .001). The network's error rate was significantly better to detect cardiac enlargement and for bronchial pattern. The current network only provides help in detecting various lesion types and does not provide a diagnosis. Based on its overall very good performance, this could be used as an aid to general practitioners while waiting for the radiologist's report.


Subject(s)
Cardiomegaly/veterinary , Cat Diseases/diagnostic imaging , Clinical Competence , Dog Diseases/diagnostic imaging , Veterinarians , Algorithms , Animals , Artificial Intelligence , Cardiomegaly/diagnostic imaging , Cats , Deep Learning , Dogs , Humans , Radiography, Thoracic/veterinary , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...