Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Res Sq ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38853960

ABSTRACT

Background: The collection of microorganisms, mainly bacteria, which live in the gastrointestinal (GI) tract are collectible known as the gut microbiota. GI bacteria play an active role in regulation of the host's immune system and metabolism, as well as certain pathophysiological processes. Diet is the main factor modulating GI microbiota composition and recent studies have shown that high fat (HF) diets induce detrimental changes, known as dysbiosis, in the GI bacterial makeup. HF diet induced microbiota dysbiosis has been associated with structural and functional changes in gut-brain vagally mediated signaling system, associated with overeating and obesity. Although HF-driven changes in microbiota composition are sufficient to alter vagal signaling, it is unknown if restoring normal microbiota in obesity can improve gut-brain signaling and metabolic outcomes. In this study, we evaluated the effect of lean gut microbiota transfer in obese, vagally compromised, rats on gut-brain communication, food intake, and body weight. Male Sprague-Dawley rats were maintained on regular chow, or 45% HF diet for nine weeks followed by three weeks of microbiota depletion using an antibiotic cocktail. The animals were then divided into four groups (n=10 each): LF - control group on regular chow, LF-LF - chow fed animals that received antibiotics and microbiota from chow fed animals, HF-LF - HF fed animals that received microbiota from chow fed animals, and HF-HF - HF fed animals that received microbiota from HF fed animals. Animals were gavaged with donor microbiota for three consecutive days on week one and once a week thereafter for three more weeks. HF-LF animals received inulin as a prebiotic to aid the establishment of the lean microbiome. Results: We found that transferring a LF microbiota to HF fed animals (HF-LF) reduced caloric intake during the light phase when compared with HF-HF rats and prevented additional excessive weight gain. We did not observe significant changes in the density of vagal afferents terminating in the brainstem among the groups, however, HF-LF animals displayed an increase in postprandial activation of both primary sensory neurons innervating the GI tract and brainstem secondary neurons. Conclusions: We concluded from these data that normalizing microbiota composition in obese rats improves gut-brain communication and restores normal feeding patterns which was associated with a reduction in weight gain.

2.
Mol Metab ; 75: 101764, 2023 09.
Article in English | MEDLINE | ID: mdl-37380023

ABSTRACT

OBJECTIVE: Our goal is to investigate if microbiota composition modulates reward signaling and assess the role of the vagus in mediating microbiota to brain communication. METHODS: Male germ-free Fisher rats were colonized with gastrointestinal contents from chow (low fat (LF) ConvLF) or HF (ConvHF) fed rats. RESULTS: Following colonization, ConvHF rats consumed significantly more food than ConvLF animals. ConvHF rats displayed lower feeding-induced extracellular DOPAC levels (a metabolite of dopamine) in the Nucleus Accumbens (NAc) as well as reduced motivation for HF foods compared to ConvLF rats. Dopamine receptor 2 (DDR2) expression levels in the NAc were also significantly lower in ConvHF animals. Similar deficits were observed in conventionally raised HF fed rats, showing that diet-driven alteration in reward can be initiated via microbiota. Selective gut to brain deafferentation restored DOPAC levels, DRD2 expression, and motivational drive in ConvHF rats. CONCLUSIONS: We concluded from these data that a HF-type microbiota is sufficient to alter appetitive feeding behavior and that bacteria to reward communication is mediated by the vagus nerve.


Subject(s)
Brain-Gut Axis , Feeding Behavior , Rats , Male , Animals , 3,4-Dihydroxyphenylacetic Acid , Feeding Behavior/physiology , Reward , Bacteria
3.
Nutrients ; 13(9)2021 Aug 31.
Article in English | MEDLINE | ID: mdl-34578945

ABSTRACT

The gut microbiota plays a key role in modulating host physiology and behavior, particularly feeding behavior and energy homeostasis. There is accumulating evidence demonstrating a role for gut microbiota in the etiology of obesity. In human and rodent studies, obesity and high-energy feeding are most consistently found to be associated with decreased bacterial diversity, changes in main phyla relative abundances and increased presence of pro-inflammatory products. Diet-associated alterations in microbiome composition are linked with weight gain, adiposity, and changes in ingestive behavior. There are multiple pathways through which the microbiome influences food intake. This review discusses these pathways, including peripheral mechanisms such as the regulation of gut satiety peptide release and alterations in leptin and cholecystokinin signaling along the vagus nerve, as well as central mechanisms, such as the modulation of hypothalamic neuroinflammation and alterations in reward signaling. Most research currently focuses on determining the role of the microbiome in the development of obesity and using microbiome manipulation to prevent diet-induced increase in food intake. More studies are necessary to determine whether microbiome manipulation after prolonged energy-dense diet exposure and obesity can reduce intake and promote meaningful weight loss.


Subject(s)
Diet/methods , Energy Metabolism/physiology , Feeding Behavior/physiology , Gastrointestinal Microbiome/physiology , Reward , Satiation/physiology , Humans
4.
Peptides ; 138: 170492, 2021 04.
Article in English | MEDLINE | ID: mdl-33422646

ABSTRACT

In 1973, Gibbs, Young, and Smith showed that exogenous cholecystokinin (CCK) administration reduces food intake in rats. This initial report has led to thousands of studies investigating the physiological role of CCK in regulating feeding behavior. CCK is released from enteroendocrine I cells present along the gastrointestinal (GI) tract. CCK binding to its receptor CCK1R leads to vagal afferent activation providing post-ingestive feedback to the hindbrain. Vagal afferent neurons' (VAN) sensitivity to CCK is modulated by energy status while CCK signaling regulates gene expression of other feeding related signals and receptors expressed by VAN. In addition to its satiation effects, CCK acts all along the GI tract to optimize digestion and nutrient absorption. Diet-induced obesity (DIO) is characterized by reduced sensitivity to CCK and every part of the CCK system is negatively affected by chronic intake of energy-dense foods. EEC have recently been shown to adapt to diet, CCK1R is affected by dietary fats consumption, and the VAN phenotypic flexibility is lost in DIO. Altered endocannabinoid tone, changes in gut microbiota composition, and chronic inflammation are currently being explored as potential mechanisms for diet driven loss in CCK signaling. This review discusses our current understanding of how CCK controls food intake in conditions of leanness and how control is lost in chronic energy excess and obesity, potentially perpetuating excessive intake.


Subject(s)
Cholecystokinin/genetics , Eating/genetics , Obesity/genetics , Receptor, Cholecystokinin A/genetics , Animals , Cholecystokinin/biosynthesis , Cholecystokinin/pharmacology , Diet, High-Fat/adverse effects , Dietary Fats/adverse effects , Feeding Behavior/drug effects , Feeding Behavior/physiology , Gastrointestinal Tract/metabolism , Humans , Neurons, Afferent/metabolism , Neurons, Afferent/pathology , Obesity/etiology , Obesity/physiopathology , Obesity/therapy , Rats
5.
Physiol Behav ; 226: 113124, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32763334

ABSTRACT

Vagal afferent neurons (VAN) projecting to the lamina propria of the digestive tract are the primary source of gut-originating signals to the central nervous system (CNS). VAN cell bodies are found in the nodose ganglia (NG). Responsiveness of VAN to gut-originating signals is altered by feeding status with sensitivity to satiety signals such as cholecystokinin (CCK) increasing in the fed state. Chronic high-fat (HF) feeding results in inflammation at the level of the NG associated with a loss of VAN ability to switch phenotype from the fasted to the fed state. HF feeding also leads to compositional changes in the gut microbiota. HF diet consumption notably drives increased Firmicutes to Bacteroidetes phyla ratio and increased members of the Actinobacteria phylum. Firmicutes and Actinobacteria are largely gram positive (GP). In this study, we aimed to determine if byproducts from GP bacteria can induce an inflammatory response in cultured NG and to characterize the mechanism and cell types involved in the response. NG were collected from male Wistar rats and cultured for a total of 72 hours. At 48-68 hours after plating, cultures were treated with neuronal culture media in which Serinicoccus chungangensis had been grown and removed (SUP), lipoteichoic acid (LTA), or meso-diaminopimelic acid (meso-DAP). Some treatments included the glial inhibitors minocycline (MINO) and/or fluorocitrate (FC). The responses were evaluated using immunocytochemistry, qPCR, and electrochemiluminescence. We found that SUP induced an inflammatory response characterized by increased interleukin (IL)-6 staining and increased expression of genes for IL-6, interferon (IFN)γ, and tumor necrosis factor (TNF)α along with genes associated with cell-to-cell communication such as C-C motif chemokine ligand-2 (CCL2). Inclusion of inhibitors attenuated some responses but failed to completely normalize all indications of response, highlighting the role of immunocompetent cellular crosstalk in regulating the inflammatory response. LTA and meso-DAP produced responses that shared characteristics with SUP but were not identical. Our results support a role for HF associated GP bacterial byproducts' ability to contribute to vagal inflammation and to engage signaling from nonneuronal cells.


Subject(s)
Gastrointestinal Microbiome , Nodose Ganglion , Actinobacteria , Animals , Bacteria , Male , Neurons , Rats , Rats, Wistar
6.
Nutrients ; 11(11)2019 Nov 08.
Article in English | MEDLINE | ID: mdl-31717368

ABSTRACT

(1) High-fat (HF) diet leads to gut microbiota dysbiosis which is associated with systemic inflammation. Bacterial-driven inflammation is sufficient to alter vagally mediated satiety and induce hyperphagia. Promoting bacterial fermentation improves gastrointestinal (GI) epithelial barrier function and reduces inflammation. Resistant starch escape digestion and can be fermented by bacteria in the distal gut. Therefore, we hypothesized that potato RS supplementation in HF-fed rats would lead to compositional changes in microbiota composition associated with improved inflammatory status and vagal signaling. (2) Male Wistar rats (n = 8/group) were fed a low-fat chow (LF, 13% fat), HF (45% fat), or an isocaloric HF supplemented with 12% potato RS (HFRS) diet. (3) The HFRS-fed rats consumed significantly less energy than HF animals throughout the experiment. Systemic inflammation and glucose homeostasis were improved in the HFRS compared to HF rats. Cholecystokinin-induced satiety was abolished in HF-fed rats and restored in HFRS rats. HF feeding led to a significant decrease in positive c fiber staining in the brainstem which was averted by RS supplementation. (4) The RS supplementation prevented dysbiosis and systemic inflammation. Additionally, microbiota manipulation via dietary potato RS prevented HF-diet-induced reorganization of vagal afferent fibers, loss in CCK-induced satiety, and hyperphagia.


Subject(s)
Bacteria/growth & development , Brain/physiopathology , Dietary Supplements , Dysbiosis , Gastrointestinal Microbiome , Inflammation/prevention & control , Intestines/innervation , Intestines/microbiology , Obesity/prevention & control , Solanum tuberosum , Starch/administration & dosage , Vagus Nerve/physiopathology , Animal Feed , Animals , Bacteria/metabolism , Brain/metabolism , Diet, High-Fat , Disease Models, Animal , Feeding Behavior , Fermentation , Hyperphagia/metabolism , Hyperphagia/microbiology , Hyperphagia/physiopathology , Hyperphagia/prevention & control , Inflammation/metabolism , Inflammation/microbiology , Inflammation/physiopathology , Male , Obesity/metabolism , Obesity/microbiology , Obesity/physiopathology , Plant Roots , Rats, Wistar , Satiety Response , Starch/metabolism , Vagus Nerve/metabolism , Weight Gain
7.
Nutrients ; 11(9)2019 Aug 22.
Article in English | MEDLINE | ID: mdl-31443365

ABSTRACT

Development of obesity-associated comorbidities is related to chronic inflammation, which has been linked to gut microbiota dysbiosis. Thus, modulating gut microbiota composition could have positive effects for metabolic disorders, supporting the use of probiotics as potential therapeutics in vivo, which may be enhanced by a microencapsulation technique. Here we investigated the effects of non-encapsulated or pectin-encapsulated probiotic supplementation (Lactobacillus paracasei subsp. paracasei L. casei W8®; L. casei W8) on gut microbiota composition and metabolic profile in high-fat (HF) diet-fed rats. Four male Wistar rat groups (n = 8/group) were fed 10% low-fat, 45% HF, or HF with non-encapsulated or encapsulated L. casei W8 (4 × 107 CFU/g diet) diet for seven weeks. Microbiota composition, intestinal integrity, inflammatory profiles, and glucose tolerance were assessed. Non-encapsulated and pectin-encapsulated probiotic supplementation positively modulated gut microbiota composition in HF-fed male rats. These changes were associated with improvements in gut barrier functions and local and systemic inflammation by non-encapsulated probiotics and improvement in glucose tolerance by encapsulated probiotic treatment. Thus, these findings suggest the potential of using oral non-encapsulated or encapsulated probiotic supplementation to ameliorate obesity-associated metabolic abnormalities.


Subject(s)
Blood Glucose/metabolism , Diet, High-Fat , Gastrointestinal Microbiome , Glucose Intolerance/prevention & control , Inflammation/prevention & control , Intestines/microbiology , Lactobacillus/growth & development , Probiotics/administration & dosage , Animals , Disease Models, Animal , Dysbiosis , Energy Metabolism , Glucose Intolerance/blood , Glucose Intolerance/etiology , Glucose Intolerance/microbiology , Inflammation/blood , Inflammation/etiology , Inflammation/microbiology , Inflammation Mediators/blood , Insulin/blood , Male , Permeability , Rats, Wistar
8.
Physiol Behav ; 199: 282-291, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30502357

ABSTRACT

Circulating levels of bacterial lipopolysaccharide (LPS) or endotoxin are chronically elevated in obesity (metabolic endotoxemia), resulting in low-grade inflammation. Metabolic endotoxemia has been identified as a triggering factor for obesity-associated metabolic complications such as insulin resistance. Furthermore, LPS has been shown to modulate endocannabinoid synthesis and notably to induce cannabinoid receptor type-1 (CB1) ligand synthesis. CB1 activation promotes inflammation, increases food intake and impairs insulin signaling. Therefore, we hypothesized that LPS acts through a CB1-dependent mechanism to aggravate inflammation and promote insulin resistance. Male Wistar rats fed a chow diet were implanted with mini-osmotic pumps delivering a low dose of LPS (n = 20; 12.5 µg/kg body weight (BW)/hr.) or saline (n = 10) continuously for six weeks. LPS-treated rats were injected daily with a CB1 antagonist (Rimonabant, SR141716A; 3 mg/kg, intraperitoneal (ip); LPS + CB1x; n = 10) or vehicle (1 mL/kg, LPS; n = 10). Control and LPS rats' food intake was matched to the LPS + CB1x group level. Despite no significant differences in body weight among groups, chronic exposure to low-level LPS altered hepatic endocannabinoid signaling, increased inflammation, and impaired insulin sensitivity and insulin clearance (P < 0.05). CB1 inhibition significantly attenuated LPS signaling (P < 0.05), which attenuated LPS-induced metabolic alterations. Therefore, we concluded that CB1 contributes to LPS-mediated inflammation and insulin resistance, suggesting that blocking CB1 signaling may have therapeutic benefits in reducing inflammation-induced metabolic abnormalities.


Subject(s)
Endotoxemia/metabolism , Inflammation/metabolism , Insulin Resistance/physiology , Receptor, Cannabinoid, CB1/metabolism , Animals , Body Weight/drug effects , Cannabinoid Receptor Antagonists/pharmacology , Eating/drug effects , Endotoxemia/chemically induced , Inflammation/chemically induced , Lipopolysaccharides , Liver/drug effects , Liver/metabolism , Male , Rats , Rats, Wistar , Rimonabant/pharmacology , Signal Transduction/drug effects
9.
Am J Physiol Regul Integr Comp Physiol ; 315(6): R1254-R1260, 2018 12 01.
Article in English | MEDLINE | ID: mdl-30230934

ABSTRACT

There is accumulating evidence that the gut microbiota and its composition dynamics play a crucial role in regulating the host physiological functions and behavior. Diet composition is the primary modulator of bacterial richness and abundance in the gastrointestinal (GI) tract. Macronutrient (fat, sugar, and protein) and fiber contents are especially important in determining microbiota composition and its effect on health outcomes and behavior. In addition to food composition, time of intake and eating patterns have recently been shown to significantly affect gut bacterial makeup. Diet-driven unfavorable microbiota composition, or dysbiosis, can lead to an increased production of proinflammatory by-products such as lipopolysaccharide (LPS). Increased inflammatory potential is associated with alteration in gut permeability, resulting in elevated levels of LPS in the bloodstream, or metabolic endotoxemia. We have found that a chronic increase in circulating LPS is sufficient to induce hyperphagia in rodents. Chronic LPS treatment appears to specifically impair the gut-brain axis and vagally mediated satiety signaling. The vagus nerve relays information on the quantity and quality of nutrients in the GI tract to the nucleus of solitary tract in the brain stem. There is evidence that microbiota dysbiosis is associated with remodeling of the vagal afferent pathway and that normalizing the microbiota composition in rats fed a high-fat diet is sufficient to prevent vagal remodeling. Taken together, these data support a role for the microbiota in regulating gut-brain communication and eating behavior. Bacteria-originating inflammation may play a key role in impairment of diet-driven satiety and the development of hyperphagia.


Subject(s)
Eating/physiology , Feeding Behavior/physiology , Microbiota/physiology , Animals , Gastrointestinal Tract/metabolism , Humans , Obesity/metabolism
10.
Physiol Behav ; 192: 177-181, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29605585

ABSTRACT

Advances in sequencing technologies have allowed for a more complete analysis of the microbiota composition and identification of differences among individuals and/or physiologies. Changes in microbiota composition and associated inflammation have been linked to both metabolic and behavioral disorders, and abnormality in microbiota composition, or dysbiosis, may play a causal role in the etiology and maintenance of these pathologies. There is accumulating evidence showing that the gut microbiota can communicate to the central nervous system to alter host behavior. Supplementation with L. rhamnosus in mice notably causes a decrease in anxiety. Interestingly, these effects are abolished by vagotomy, identifying the vagus nerve as a potential communication route for microbiota-originating signals. Chronic high fat feeding notably leads to remodeling of the vagal afferent pathway and is associated with an increase in energy intake; these effects appear to be mediated by microbiota-induced inflammation. Therefore, preventing bacterial-driven inflammation, via dietary manipulation for example, may have potential therapeutic effects for both metabolic and behavioral disorders.


Subject(s)
Diet , Feeding Behavior/physiology , Gastrointestinal Microbiome/physiology , Animals , Diet/adverse effects , Dysbiosis/physiopathology , Humans , Vagus Nerve/physiology , Vagus Nerve/physiopathology
11.
J Nutr ; 148(2): 209-219, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29490092

ABSTRACT

Background: Gut microbiota dysbiosis has been linked to obesity-associated chronic inflammation. Microbiota manipulation may therefore affect obesity-related comorbidities. Blueberries are rich in anthocyanins, which have anti-inflammatory properties and may alter the gut microbiota. Objective: We hypothesized that blueberry supplementation would alter the gut microbiota, reduce systemic inflammation, and improve insulin resistance in high-fat (HF)-diet-fed rats. Methods: Twenty-four male Wistar rats (260-270 g; n = 8/group) were fed low-fat (LF; 10% fat), HF (45% fat), or HF with 10% by weight blueberry powder (HF_BB) diets for 8 wk. LF rats were fed ad libitum, whereas HF and HF_BB rats were pair-fed with diets matched for fiber and sugar contents. Glucose tolerance, microbiota composition (16S ribosomal RNA sequencing), intestinal integrity [villus height, gene expression of mucin 2 (Muc2) and ß-defensin 2 (Defb2)], and inflammation (gene expression of proinflammatory cytokines) were assessed. Results: Blueberry altered microbiota composition with an increase in Gammaproteobacteria abundance (P < 0.001) compared with LF and HF rats. HF feeding led to an ∼15% decrease in ileal villus height compared with LF rats (P < 0.05), which was restored by blueberry supplementation. Ileal gene expression of Muc2 was ∼150% higher in HF_BB rats compared with HF rats (P < 0.05), with expression in the LF group not being different from that in either the HF or HF_BB groups. Tumor necrosis factor α (Tnfa) and interleukin 1ß (Il1b) gene expression in visceral fat was increased by HF feeding when compared with the LF group (by 300% and 500%, respectively; P < 0.05) and normalized by blueberry supplementation. Finally, blueberry improved markers of insulin sensitivity. Hepatic insulin receptor substrate 1 (IRS1) phosphorylation at serine 307:IRS1 ratio was ∼35% higher in HF rats compared with LF rats (P < 0.05) and HF_BB rats. Conclusion: In HF-diet-fed male rats, blueberry supplementation led to compositional changes in the gut microbiota associated with improvements in systemic inflammation and insulin signaling.


Subject(s)
Blueberry Plants , Diet, High-Fat/adverse effects , Gastrointestinal Microbiome/drug effects , Inflammation/prevention & control , Insulin Resistance/physiology , Plant Extracts/administration & dosage , Adipose Tissue/drug effects , Animals , Anthocyanins/administration & dosage , Bacteria/classification , DNA, Bacterial/analysis , Dietary Fiber/administration & dosage , Dietary Supplements , Fruit/chemistry , Gastrointestinal Microbiome/genetics , Glucose Tolerance Test , Liver/drug effects , Male , Rats , Rats, Wistar , Sequence Analysis, DNA
12.
Brain Res ; 1693(Pt B): 134-139, 2018 08 15.
Article in English | MEDLINE | ID: mdl-29360469

ABSTRACT

Contemporary techniques including the use of germ-free models and next generation sequencing have deepened our understanding of the gut microbiota dynamics and its influence on host physiology. There is accumulating evidence that the gut microbiota can communicate to the CNS and is involved in the development of metabolic and behavioral disorders. Vagal afferent terminals are positioned beneath the gut epithelium where they can receive, directly or indirectly, signals produced by the gut microbiota, to affect host behavior, including feeding behavior. Supplementation with L. Rhamnosus in mice notably causes a decrease in anxiety and these effects are abolished by vagotomy. Additionally, chronic treatment with bacterial byproduct lipopolysaccharide (LPS) blunts vagally-mediated post-ingestive feedback and is associated with increased food intake. Inflammation in the nodose ganglion (NG), the location of vagal afferent neurons' cell bodies, may be a key triggering factor of microbiota-driven vagal alteration. Interestingly, several models show that vagal damage leads to an increase in immune cell (microglia) activation in the NG and remodeling of the vagal pathway. Similarly, diet-driven microbiota dysbiosis is associated with NG microglia activation and decreased vagal outputs to the CNS. Crucially, preventing dysbiosis and microglia activation in high-fat diet fed rodents normalizes vagal innervation and energy intake, highlighting the importance of microbiota/vagal communication in controlling feeding behavior. As of today, new consideration of potential roles for glial influence on vagal communication and new methods of vagal afferent ablation open opportunities to increase our understanding of how the gut microbiota influence its host's health and behavior.


Subject(s)
Afferent Pathways/physiology , Gastrointestinal Microbiome/physiology , Vagus Nerve/physiology , Animals , Brain/physiology , Humans
13.
Article in English | MEDLINE | ID: mdl-28986283

ABSTRACT

Alterations in lipid metabolism play a significant role in the pathogenesis of obesity-associated disorders, and dysregulation of the lipidome across multiple diseases has prompted research to identify novel lipids indicative of disease progression. To address the significant gap in knowledge regarding the effect of age and diet on the blood lipidome, we used shotgun lipidomics with electrospray ionization-mass spectrometry (ESI-MS). We analyzed blood lipid profiles of female C57BL/6 mice following high-fat diet (HFD) and low-fat diet (LFD) consumption for short (6weeks), long (22weeks), and prolonged (36weeks) periods. We examined endocannabinoid levels, plasma esterase activity, liver homeostasis, and indices of glucose tolerance and insulin sensitivity to compare lipid alterations with metabolic dysregulation. Multivariate analysis indicated differences in dietary blood lipid profiles with the most notable differences after 6weeks along with robust alterations due to age. HFD altered phospholipids, fatty acyls, and glycerolipids. Endocannabinoid levels were affected in an age-dependent manner, while HFD increased plasma esterase activity at all time points, with the most pronounced effect at 6weeks. HFD-consumption also altered liver mRNA levels of PPARα, PPARγ, and CD36. These findings indicate an interaction between dietary fat consumption and aging with widespread effects on the lipidome, which may provide a basis for identification of female-specific obesity- and age-related lipid biomarkers.


Subject(s)
Aging/blood , Diet, High-Fat , Endocannabinoids/blood , Lipid Metabolism , Lipids/blood , Age Factors , Aging/metabolism , Animals , Dietary Fats/pharmacology , Endocannabinoids/metabolism , Female , Lipid Metabolism/drug effects , Lipids/analysis , Metabolome/drug effects , Mice , Mice, Inbred C57BL
14.
Acta Neurobiol Exp (Wars) ; 77(1): 18-30, 2017.
Article in English | MEDLINE | ID: mdl-28379213

ABSTRACT

Obesity is associated with consumption of energy-dense diets and development of systemic inflammation. Gut microbiota play a role in energy harvest and inflammation and can influence the change from lean to obese phenotypes. The nucleus of the solitary tract (NTS) is a brain target for gastrointestinal signals modulating satiety and alterations in gut-brain vagal pathway may promote overeating and obesity. Therefore, we tested the hypothesis that high-fat diet­induced changes in gut microbiota alter vagal gut-brain communication associated with increased body fat accumulation. Sprague-Dawley rats consumed a low energy­dense rodent diet (LFD; 3.1 kcal/g) or high energy­dense diet (HFD, 5.24 kcal/g). Minocycline was used to manipulate gut microbiota composition. 16S Sequencing was used to determine microbiota composition. Immunofluorescence against IB4 and Iba1 was used to determine NTS reorganization and microglia activation. Nodose ganglia from LFD rats were isolated and co-cultured with different bacteria strains to determine neurotoxicity. HFD altered gut microbiota with increases in Firmicutes/Bacteriodetes ratio and in pro-inflammatory Proteobacteria proliferation. HFD triggered reorganization of vagal afferents and microglia activation in the NTS, associated with weight gain. Minocycline-treated HFD rats exhibited microbiota profile comparable to LFD animals. Minocycline suppressed HFD­induced reorganization of vagal afferents and microglia activation in the NTS, and reduced body fat accumulation. Proteobacteria isolated from cecum of HFD rats were toxic to vagal afferent neurons in culture. Our findings show that diet­induced shift in gut microbiome may disrupt vagal gut­brain communication resulting in microglia activation and increased body fat accumulation.


Subject(s)
Adipose Tissue/metabolism , Diet, High-Fat , Gastrointestinal Microbiome/physiology , Solitary Nucleus/physiology , Vagus Nerve/physiology , Afferent Pathways/physiology , Animals , Anti-Bacterial Agents/pharmacology , Body Weight/drug effects , Eating/drug effects , Feces/microbiology , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/genetics , Gram-Negative Bacteria/isolation & purification , Lectins/metabolism , Lipopolysaccharides/blood , Male , Microglia/drug effects , Microglia/metabolism , Minocycline/pharmacology , Nodose Ganglion/metabolism , Nodose Ganglion/microbiology , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Rats , Rats, Sprague-Dawley , Solitary Nucleus/drug effects , Solitary Nucleus/metabolism , Time Factors , Vagus Nerve/drug effects
15.
Physiol Behav ; 173: 305-317, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28249783

ABSTRACT

Obesity is one of the major health issues in the United States. Consumption of diets rich in energy, notably from fats and sugars (high-fat/high-sugar diet: HF/HSD) is linked to the development of obesity and a popular dietary approach for weight loss is to reduce fat intake. Obesity research traditionally uses low and high fat diets and there has been limited investigation of the potential detrimental effects of a low-fat/high-sugar diet (LF/HSD) on body fat accumulation and health. Therefore, in the present study, we investigated the effects of HF/HSD and LF/HSD on microbiota composition, gut inflammation, gut-brain vagal communication and body fat accumulation. Specifically, we tested the hypothesis that LF/HSD changes the gut microbiota, induces gut inflammation and alters vagal gut-brain communication, associated with increased body fat accumulation. Sprague-Dawley rats were fed an HF/HSD, LF/HSD or control low-fat/low-sugar diet (LF/LSD) for 4weeks. Body weight, caloric intake, and body composition were monitored daily and fecal samples were collected at baseline, 1, 6 and 27days after the dietary switch. After four weeks, blood and tissues (gut, brain, liver and nodose ganglia) were sampled. Both HF/HSD and LF/HSD-fed rats displayed significant increases in body weight and body fat compared to LF/LSD-fed rats. 16S rRNA sequencing showed that both HF/HSD and LF/HSD-fed animals exhibited gut microbiota dysbiosis characterized by an overall decrease in bacterial diversity and an increase in Firmicutes/Bacteriodetes ratio. Dysbiosis was typified by a bloom in Clostridia and Bacilli and a marked decrease in Lactobacillus spp. LF/HSD-fed animals showed a specific increase in Sutterella and Bilophila, both Proteobacteria, abundances of which have been associated with liver damage. Expression of pro-inflammatory cytokines, such as IL-6, IL-1ß and TNFα, was upregulated in the cecum while levels of tight junction protein occludin were downregulated in both HF/HSD and LF/HSD fed rats. HF/HSD and LF/HSD-fed rats also exhibited an increase in cecum and serum levels of lipopolysaccharide (LPS), a pro-inflammatory bacterial product. Immunofluorescence revealed the withdrawal of vagal afferents from the gut and at their site of termination the nucleus of the solitary tract (NTS) in both the HF/HSD and LF/HSD rats. Moreover, there was significant microglia activation in the nodose ganglia, which contain the vagal afferent neuron cell bodies, of HF/HSD and LF/HSD rats. Taken together, these data indicate that, similar to HF/HSD, consumption of an LF/HSD induces dysbiosis of gut microbiota, increases gut inflammation and alters vagal gut-brain communication. These changes are associated with an increase in body fat accumulation.


Subject(s)
Dysbiosis/chemically induced , Microbiota/drug effects , Obesity/metabolism , Obesity/physiopathology , Animals , Body Composition , Body Weight , Calcium-Binding Proteins/metabolism , Cytokines/metabolism , Diet, High-Fat , Disease Models, Animal , Eating , Energy Intake/physiology , Glycoproteins/metabolism , Lectins/metabolism , Lipopolysaccharides/pharmacology , Male , Microfilament Proteins/metabolism , RNA, Ribosomal, 16S/metabolism , Rats , Rats, Sprague-Dawley , Rhombencephalon/metabolism , Statistics, Nonparametric , Time Factors , Versicans
16.
Am J Physiol Regul Integr Comp Physiol ; 311(5): R930-R939, 2016 11 01.
Article in English | MEDLINE | ID: mdl-27534875

ABSTRACT

Increased neuropeptide Y (NPY) gene expression in the dorsomedial hypothalamus (DMH) has been shown to cause hyperphagia, but the pathway underlying this effect remains less clear. Hypothalamic neural systems play a key role in the control of food intake, in part, by modulating the effects of meal-related signals, such as cholecystokinin (CCK). An increase in DMH NPY gene expression decreases CCK-induced satiety. Since activation of catecholaminergic neurons within the nucleus of solitary tract (NTS) contributes to the feeding effects of CCK, we hypothesized that DMH NPY modulates NTS neural catecholaminergic signaling to affect food intake. We used an adeno-associated virus system to manipulate DMH NPY gene expression in rats to examine this pathway. Viral-mediated hrGFP anterograde tracing revealed that DMH NPY neurons project to the NTS; the projections were in close proximity to catecholaminergic neurons, and some contained NPY. Viral-mediated DMH NPY overexpression resulted in an increase in NPY content in the NTS, a decrease in NTS tyrosine hydroxylase (TH) expression, and reduced exogenous CCK-induced satiety. Knockdown of DMH NPY produced the opposite effects. Direct NPY administration into the fourth ventricle of intact rats limited CCK-induced satiety and overall TH phosphorylation. Taken together, these results demonstrate that DMH NPY descending signals affect CCK-induced satiety, at least in part, via modulation of NTS catecholaminergic neuronal signaling.


Subject(s)
Brain Stem/physiology , Catecholamines/metabolism , Cholecystokinin/administration & dosage , Dorsomedial Hypothalamic Nucleus/physiology , Neuropeptide Y/metabolism , Satiety Response/physiology , Animals , Brain Stem/drug effects , Cholagogues and Choleretics/administration & dosage , Cholagogues and Choleretics/pharmacology , Cholecystokinin/pharmacology , Dorsomedial Hypothalamic Nucleus/drug effects , Dose-Response Relationship, Drug , Eating/drug effects , Eating/physiology , Male , Neurons/drug effects , Neurons/physiology , Rats , Rats, Sprague-Dawley , Satiety Response/drug effects , Synaptic Transmission/physiology
17.
Physiol Behav ; 157: 196-208, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-26852949

ABSTRACT

High-fat diet (HFD) induced obesity is associated not only with metabolic dysregulation, e.g., impaired glucose homeostasis and insulin sensitivity, but also with neurological dysfunction manifested with aberrant behavior and/or neurotransmitter imbalance. Most studies have examined HFD's effects predominantly in male subjects, either in the periphery or on the brain, in isolation and after a finite feeding period. In this study, we evaluated the time-course of selected metabolic, behavioral, and neurochemical effects of HFD intake in parallel and at multiple time points in female (C57BL/6) mice. Peripheral effects were evaluated at three feeding intervals (short: 5-6 weeks, long: 20-22 weeks, and prolonged: 33-36 weeks). Central effects were evaluated only after long and prolonged feeding durations; we have previously reported those effects after the short (5-6 weeks) feeding duration. Ongoing HFD feeding resulted in an obese phenotype characterized by increased visceral adiposity and, after prolonged HFD intake, an increase in liver and kidney weights. Peripherally, 5 weeks of HFD intake was sufficient to impair glucose tolerance significantly, with the deleterious effects of HFD being greater with prolonged intake. Similarly, 5 weeks of HFD consumption was sufficient to impair insulin sensitivity. However, sensitivity to insulin after prolonged HFD intake was not different between control, low-fat diet (LFD) and HFD-fed mice, most likely due to age-dependent decrease in insulin sensitivity in the LFD-fed mice. HFD intake also induced bi-phasic hepatic inflammation and it increased gut permeability. Behaviorally, prolonged intake of HFD caused mice to be hypoactive and bury fewer marbles in a marble burying task; the latter was associated with significantly impaired hippocampal serotonin homeostasis. Cognitive (short-term recognition memory) function of mice was unaffected by chronic HFD feeding. Considering our prior findings of short-term (5-6 weeks) HFD-induced central (hyperactivity/anxiety and altered ventral hippocampal neurochemistry) effects and our current results, it seems that in female mice some metabolic/inflammatory dysregulations caused by HFD, such as gut permeability, appear early and persist, whereas others, such as glucose intolerance, are exaggerated with continuous HFD feeding; behaviorally, prolonged HFD consumption mainly affects locomotor activity and anxiety-like responses, likely due to the advanced obesity phenotype; neurochemically, the serotonergic system appears to be most sensitive to continued HFD feeding.


Subject(s)
Diet, High-Fat/adverse effects , Hyperkinesis/etiology , Metabolic Diseases/etiology , Metabolic Diseases/metabolism , Mood Disorders/etiology , Neurochemistry , Age Factors , Animals , Capillary Permeability , Exploratory Behavior/physiology , Female , Hippocampus/metabolism , Insulin Resistance/physiology , Liver/metabolism , Locomotion/physiology , Mice , Mice, Inbred C57BL , Muscle Strength , Neurotransmitter Agents/metabolism , Swimming/psychology , Time Factors
19.
Physiol Behav ; 139: 188-94, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25446227

ABSTRACT

Bacterially derived factors are implicated in the causation and persistence of obesity. Ingestion of a high fat diet in rodents and obesity in human subjects is associated with chronic elevation of low plasma levels of lipopolysaccharide (LPS), a breakdown product of Gram-negative bacteria. The terminals of vagal afferent neurons are positioned within the gut mucosa to convey information from the gut to the brain to regulate food intake and are responsive to LPS. We hypothesized that chronic elevation of LPS could alter vagal afferent signaling. We surgically implanted osmotic mini-pumps that delivered a constant, low-dose of LPS into the intraperitoneal cavity of rats (12.5 µg/kg/hr for 6 weeks). LPS-treated rats developed hyperphagia and showed marked changes in vagal afferent neuron function. Chronic LPS treatment reduced vagal afferent leptin signaling, characterized by a decrease in leptin-induced STAT3 phosphorylation. In addition, LPS treatment decreased cholecystokinin-induced satiety. There was no alteration in leptin signaling in the hypothalamus. These findings offer a mechanism by which a change in gut microflora can promote hyperphagia, possibly leading to obesity.


Subject(s)
Eating/physiology , Leptin/metabolism , Lipopolysaccharides/toxicity , Neurons, Afferent/physiology , Nodose Ganglion/physiopathology , Animals , Blotting, Western , Hyperphagia/physiopathology , Immunohistochemistry , Male , Peroxidase/metabolism , Rats, Wistar , Satiation/physiology , Sincalide/administration & dosage , Sincalide/metabolism , Weight Gain/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...