Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem ; 451: 139531, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38704992

ABSTRACT

Winemaking production is old knowledge of the combination of saccharification and fermentation processes. During the fermentation process, ethanol concentration is one of the main key parameters that provides the quality of wine and is linked to the consumption of carbohydrates present in wine. In this work was determined the better fermentation time, where the wine retains its highest concentration of ethanol and a higher concentration of the polysaccharides of Bordo wine of Vitis labrusca by 1D and 2D NMR measurements. The study provides information on the polysaccharide content for improving features and quality control of winemaking. Moreover, following previous studies by our group (de Lacerda Bezerra et al., 2018, de Lacerda Bezerra, Caillot, de Oliveira, Santana-Filho, & Sassaki, 2019; Stipp et al., 2023) showed that the soluble polysaccharides also inhibited the production of inflammatory cytokines (TNF-α and IL-1ß) and mediator (NO) in macrophage cells stimulated with LPS, bringing some important health benefits of wine.


Subject(s)
Ethanol , Fermentation , Magnetic Resonance Spectroscopy , Polysaccharides , Vitis , Wine , Wine/analysis , Polysaccharides/chemistry , Polysaccharides/metabolism , Polysaccharides/pharmacology , Ethanol/metabolism , Ethanol/analysis , Animals , Vitis/chemistry , Vitis/metabolism , Vitis/microbiology , Mice , RAW 264.7 Cells , Tumor Necrosis Factor-alpha/metabolism , Macrophages/drug effects , Macrophages/metabolism , Interleukin-1beta/metabolism
2.
Food Chem ; 257: 143-149, 2018 Aug 15.
Article in English | MEDLINE | ID: mdl-29622190

ABSTRACT

Three polysaccharide fractions were isolated from blackberry wine. The crude extract BWPs was obtained with ethanol precipitation and freeze-thawing process, it was then submitted to Fehling treatment, giving soluble BWPFs and insoluble BWPFp fractions. These fractions were characterized by Gas Chromatography-Mass Spectrometry (GC-MS) and Nuclear Magnetic Resonance (NMR). Major polysaccharides were identified for each fraction: mannan, type II arabinogalactan and type I rhamnogalacturonan for BWPs, a mannan formed by a major chain of α-Manp(1 → 6)-linked units, O-2 substituted with α-d-Manp(1 → 2)-linked side chains for BWPFp and a AG II formed by a major chain of ß-d-Galp(1 → 3)-linked, substituted at O-6 by side chains of the ß-d-Galp(1 → 6)-linked, which then are substituted at O-3 by non-reducing units of α-l-Araf and a RG I, formed by [→4)-α-d-GalpA-(1 → 2)-α-l-Rhap-(1→]n for BWPFs. Anti-inflammatory effects of polysaccharide fractions were evaluated in RAW 264.7 cells. Fractions markedly reduced nitric oxide (NO) and pro-inflammatory cytokine production (TNF-α and IL-1ß) in LPS-treated cells.


Subject(s)
Lipopolysaccharides/pharmacology , Macrophages/drug effects , Polysaccharides/chemistry , Polysaccharides/pharmacology , Rubus/chemistry , Wine/analysis , Animals , Immunologic Factors/chemistry , Immunologic Factors/pharmacology , Interleukin-1beta/biosynthesis , Macrophages/metabolism , Mice , Nitric Oxide/biosynthesis , RAW 264.7 Cells , Tumor Necrosis Factor-alpha/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...