Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Heredity (Edinb) ; 121(5): 406-421, 2018 11.
Article in English | MEDLINE | ID: mdl-29967397

ABSTRACT

While synonymous mutations were long thought to be without phenotypic consequences, there is growing evidence they can affect gene expression, protein folding, and ultimately the fitness of an organism. In only a few cases have the mechanisms by which synonymous mutations affect the phenotype been elucidated. We previously identified 48 mutations in TEM-1 ß-lactamase that increased resistance of Escherichia coli to cefotaxime, 10 of which were synonymous. To better understand the molecular mechanisms underlying the beneficial effect of these synonymous mutations, we made a series of measurements for a panel containing the 10 synonymous together with 10 non-synonymous mutations as a reference. Whereas messenger levels were unaffected, we found that total and functional TEM protein levels were higher for 5 out of 10 synonymous mutations. These observations suggest that some of these mutations act on translation or a downstream process. Similar effects were observed for some small-benefit non-synonymous mutations, suggesting a similar causal mechanism. For the synonymous mutations, we found that the cost of resistance scales with TEM protein levels. A resistance landscape for four synonymous mutations revealed strong epistasis: none of the combinations of mutations exceeded the resistance of the largest-effect mutation and there were synthetically neutral combinations. By considering combined effects of these mutations, we could infer that functional TEM protein level is a multi-dimensional phenotype. These results suggest that synonymous mutations may have beneficial effects by increasing the expression of an enzyme with low substrate activity, which may be realized via multiple, yet unknown, post-transcriptional mechanisms.


Subject(s)
Adaptation, Physiological/genetics , Mutation , beta-Lactamases/genetics , Alleles , Anti-Bacterial Agents/pharmacology , Cefotaxime/pharmacology , Drug Resistance, Bacterial/genetics , Epistasis, Genetic , Escherichia coli/drug effects , Escherichia coli/genetics , Escherichia coli/physiology , Genetic Fitness , Humans , beta-Lactamases/metabolism
2.
Sci Rep ; 8(1): 11127, 2018 07 24.
Article in English | MEDLINE | ID: mdl-30042491

ABSTRACT

In order to study how acidic pro-peptides inhibit the antimicrobial activity of antimicrobial peptides, we introduce a simple model system, consisting of a 19 amino-acid long antimicrobial peptide, and an N-terminally attached, 10 amino-acid long acidic model pro-peptide. The antimicrobial peptide is a fragment of the crotalicidin peptide, a member of the cathelidin family, from rattlesnake venom. The model pro-peptide is a deca (glutamic acid). Attachment of the model pro-peptide only leads to a moderately large reduction in the binding to- and induced leakage of model liposomes, while the antimicrobial activity of the crotalicidin fragment is completely inhibited by attaching the model pro-peptide. Attaching the pro-peptide induces a conformational change to a more helical conformation, while there are no signs of intra- or intermolecular peptide complexation. We conclude that inhibition of antimicrobial activity by the model pro-peptide might be related to a conformational change induced by the pro-peptide domain, and that additional effects beyond induced changes in membrane activity must also be involved.


Subject(s)
Antimicrobial Cationic Peptides/chemistry , Crotalid Venoms/chemistry , Peptide Fragments/chemistry , Amino Acid Sequence/genetics , Animals , Antimicrobial Cationic Peptides/chemical synthesis , Antimicrobial Cationic Peptides/genetics , Antimicrobial Cationic Peptides/pharmacology , Crotalid Venoms/genetics , Crotalus/genetics , Escherichia coli/drug effects , Escherichia coli/pathogenicity , Glutamic Acid/chemistry , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/pathogenicity , Liposomes/antagonists & inhibitors , Liposomes/chemistry , Membranes/drug effects , Peptide Fragments/chemical synthesis , Peptide Fragments/genetics , Peptide Fragments/pharmacology , Protein Conformation/drug effects , Protein Structure, Secondary/drug effects , Staphylococcus aureus/drug effects , Staphylococcus aureus/pathogenicity
3.
Lab Chip ; 15(13): 2754-8, 2015 Jul 07.
Article in English | MEDLINE | ID: mdl-26032595

ABSTRACT

Multicolour fluorescence detection is often necessary in droplet microfluidics, but typical detection systems are complex, bulky, and expensive. We present a compact and modular detection system capable of sub-nanomolar sensitivity utilizing an optical fibre array to encode spectral information recorded by a single photodetector.


Subject(s)
Fluorescent Dyes/chemistry , Microfluidics , Fluorescein/analysis , Fluorescent Dyes/analysis , Oils/chemistry , Organometallic Compounds/analysis , Organophosphorus Compounds/analysis , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...