Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Radiat Isot ; 170: 109598, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33545581

ABSTRACT

In radiation physics, the study of new alternative dosimeters is of interest to the growing branch of dosimetric characterization for radiotherapy applications. The goal of this work was to expose bone samples to high doses and evaluate their linearity response to gamma rays. The Fourier Transform Infrared (FTIR) spectrophotometry technique was employed as the evaluation technique, and based on the spectrophotometry absorbance profiles the linearity was assessed based on the following methods: Area Under the Curve (AUC), Wavenumber Method (WM), Partial Component Regression (PCR) and Partial Least-Square Regression (PLSR) methods. The bone samples were irradiated with absorbed doses of 10 Gy up to 500 Gy using a 60Co Gamma Cell-220 system. The results showed, for the calibration curves of the system, adequate linearity on all methods. In conclusion, the results indicate a good linear response and therefore an interesting potential radiation detector.


Subject(s)
Bone and Bones/radiation effects , Gamma Rays , Radiation Dosimeters , Spectroscopy, Fourier Transform Infrared/methods , Calibration , Humans
2.
Appl Radiat Isot ; 128: 154-157, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28711839

ABSTRACT

This paper aims to show how the variance reduction technique "Geometry splitting/Russian roulette" improves the statistical error and reduces uncertainties in the determination of the absorbed dose rate in tissue using an extrapolation chamber for beta radiation. The results show that the use of this technique can increase the number of events in the chamber cavity leading to a closer approximation of simulation result with the physical problem. There was a good agreement among the experimental measurements, the certificate of manufacture and the simulation results of the absorbed dose rate values and uncertainties. The absorbed dose rate variation coefficient using the variance reduction technique "Geometry splitting/Russian roulette" was 2.85%.

SELECTION OF CITATIONS
SEARCH DETAIL
...