Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Drug Des Devel Ther ; 14: 567-574, 2020.
Article in English | MEDLINE | ID: mdl-32103898

ABSTRACT

BACKGROUND: The bacterial cell envelope is comprised of the cell membrane and the cell wall. The bacterial cell wall provides rigidity to the cell and protects the organism from potential harmful substances also. Cell wall biosynthesis is an important physiological process for bacterial survival and thus has been a primary target for the development of antibacterials. Antimicrobial peptides that target bacterial cell wall assembly are abundant and many bind to the essential cell wall precursor molecule Lipid II. METHODS: We describe the structure-to-activity (SAR) relationship of an antimicrobial peptide-derived small molecule 7771-0701 that acts as a novel agent against cell wall biosynthesis. Derivatives of compound 7771-0701 (2-[(1E)-3-[(2E)-5,6-dimethyl-3-(prop-2-en-1-yl)-1,3-benzothiazol-2-ylidene]prop-1-en-1-yl]-1,3,3-trimethylindol-1-ium) were generated by medicinal chemistry guided by Computer-Aided Drug Design and NMR. Derivatives were tested for antibacterial activity and Lipid II binding. RESULTS: Our results show that the N-alkyl moiety is subject to change without affecting functionality and further show the functional importance of the sulfur in the scaffold. The greatest potency against Gram-positive bacteria and Lipid II affinity was achieved by incorporation of a bromide at the R3 position of the benzothiazole ring. CONCLUSION: We identify optimized small molecule benzothiazole indolene scaffolds that bind to Lipid II for further development as antibacterial therapeutics.


Subject(s)
Anti-Bacterial Agents/pharmacology , Benzothiazoles/pharmacology , Gram-Positive Bacteria/drug effects , Uridine Diphosphate N-Acetylmuramic Acid/analogs & derivatives , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Benzothiazoles/chemical synthesis , Benzothiazoles/chemistry , Cell Wall/drug effects , Drug Design , Molecular Dynamics Simulation , Structure-Activity Relationship , Uridine Diphosphate N-Acetylmuramic Acid/metabolism
2.
Infect Drug Resist ; 10: 69-73, 2017.
Article in English | MEDLINE | ID: mdl-28280373

ABSTRACT

We have recently identified small molecule compounds that act as binders of Lipid II, an essential precursor of bacterial cell wall biosynthesis. Lipid II comprised a hydrophilic head group that includes a peptidoglycan subunit composed of N-acetylglucosamine (GlcNAc) and N-acetylmuramic acid (MurNAc) coupled to a short pentapeptide moiety. This headgroup is coupled to a long bactoprenol chain via a pyrophosphate group. Here, we report on the cell wall activity relationship of dimethyl-3-methyl(phenyl)amino-ethenylcyclohexylidene-propenyl-3-ethyl-1,3-benzothiazolium iodide (compound 5107930) obtained by functional and genetic analyses. Our results indicate that compounds bind to Lipid II and cause specific upregulation of the vancomycin-resistance associated gene vraX. vraX is implicated in the cell wall stress stimulon that confers glycopeptide resistance. Our small molecule Lipid II inhibitor retained activity against strains of Staphylococcus aureus mutated in genes encoding the cell wall stress stimulon. This suggests the feasibility of developing this new scaffold as a therapeutic agent in view of increasing glycopeptide resistance.

SELECTION OF CITATIONS
SEARCH DETAIL
...