Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
J Natl Compr Canc Netw ; 21(6): 645-651.e1, 2023 06.
Article in English | MEDLINE | ID: mdl-37308124

ABSTRACT

BACKGROUND: Alectinib is the keystone treatment in advanced anaplastic lymphoma kinase-positive (ALK+) non-small cell lung cancer (NSCLC). An exposure-response threshold of 435 ng/mL has recently been established, albeit 37% of patients do not reach this threshold. Alectinib is orally administered, and absorption is largely influenced by food. Hence, further investigation into this relationship is needed to optimize its bioavailability. PATIENTS AND METHODS: In this randomized 3-period crossover clinical study in ALK+ NSCLC, alectinib exposure was compared among patients with different diets. Every 7 days, the first alectinib dose was taken with either a continental breakfast, 250-g of low-fat yogurt, or a self-chosen lunch, and the second dose was taken with a self-chosen dinner. Sampling for alectinib exposure (Ctrough) was performed at day 8, just prior to alectinib intake, and the relative difference in Ctrough was compared. RESULTS: In 20 evaluable patients, the mean Ctrough was 14% (95% CI, -23% to -5%; P=.009) and 20% (95% CI, -25% to -14%; P<.001) lower when taken with low-fat yogurt compared with a continental breakfast and a self-chosen lunch, respectively. Administration with a self-chosen lunch did not change exposure compared with a continental breakfast (+7%; 95% CI, -2% to +17%; P=.243). In the low-fat yogurt period, 35% of patients did not reach the threshold versus 5% with the other meals (P<.01). CONCLUSIONS: Patients and physicians should be warned for a detrimental food-drug interaction when alectinib is taken with low-fat yogurt, because it results in a clinically relevant lower alectinib exposure. Intake with a self-chosen lunch did not change drug exposure and could be a safe and patient-friendly alternative.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carbazoles , Receptor Protein-Tyrosine Kinases
2.
J Thorac Oncol ; 18(8): 1017-1030, 2023 08.
Article in English | MEDLINE | ID: mdl-37001858

ABSTRACT

INTRODUCTION: Alectinib is a standard-of-care treatment for metastatic ALK+ NSCLC. Weight gain is an unexplored side effect reported in approximately 10%. To prevent or intervene alectinib-induced weight gain, more insight in its extent and etiology is needed. METHODS: Change in body composition was analyzed in a prospective series of 46 patients with ALK+ NSCLC, treated with alectinib. Waist circumference, visceral adipose tissue (VAT), subcutaneous adipose tissue (SAT), and skeletal muscle were quantified using sliceOmatic software on computed tomography images at baseline, 3 months (3M), and 1 year (1Y). To investigate an exposure-toxicity relationship, alectinib plasma concentrations were quantified. Four patients with more than 10 kg weight gain were referred to Erasmus MC Obesity Center CGG for in-depth analysis (e.g., assessments of appetite, dietary habits, other lifestyle, medical and psychosocial factors, and extensive metabolic and endocrine assessments, including resting energy expenditure). RESULTS: Mean increase in waist circumference was 9 cm (9.7%, p < 0.001) in 1Y with a 40% increase in abdominal obesity (p = 0.014). VAT increased to 10.8 cm2 (15.0%, p = 0.003) in 3M and 35.7 cm2 (39.0%, p < 0.001) in 1Y. SAT increased to 18.8 cm2 (12.4%, p < 0.001) in 3M and 45.4 cm2 (33.3%, p < 0.001) in 1Y. The incidence of sarcopenic obesity increased from 23.7% to 47.4% during 1Y of treatment. Baseline waist circumference was a positive predictor of increase in VAT (p = 0.037). No exposure-toxicity relationship was found. In-depth analysis (n = 4) revealed increased appetite in two patients and metabolic syndrome in all four patients. CONCLUSIONS: Alectinib may cause relevant increased sarcopenic abdominal obesity, with increases of both VAT and SAT, quickly after initiation. This may lead to many serious metabolic, physical, and mental disturbances in long-surviving patients.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Sarcopenia , Humans , Lung Neoplasms/pathology , Obesity, Abdominal/chemically induced , Obesity, Abdominal/drug therapy , Carcinoma, Non-Small-Cell Lung/secondary , Carbazoles/adverse effects , Obesity , Weight Gain , Anaplastic Lymphoma Kinase
3.
J Pharm Biomed Anal ; 225: 115233, 2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36638566

ABSTRACT

Overall survival in metastatic lung cancer has been dramatically improved with the use of small molecule kinase inhibitors (SMKIs). Quantification of SMKI in cerebrospinal fluid (CSF) can be used to assess penetration of these drugs into the central nervous system. This paper describes an ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method for quantification of the SMKIs alectinib, lorlatinib and osimertinib in human CSF. Alectinib-d8 and dasatinib-d8 were used as internal standards. Aliquots with 25 µL CSF/30% albumin (9:1,v/v) were mixed with 100 µL internal standard solution consisting of 1 ng/mL dasatinib-d8 and alectinib-d8 in acetonitrile. The analytes were separated by an Acquity UPLC® HSS T3 column (2.1 ×150 mm, 1.8 µm), using gradient elution (ammonium formate pH 4.5, acetonitrile) with a flow rate of 0.400 mL/min. All calibration curves were linear for the concentration range from 2.50 to 250 ng/mL. Within-run and between-run precision varied from 0.72% to 11.7%, with accuracy ranging from 95.3% to 113.2%. For all compounds, a high degree of non-specific binding to the vacutainer was observed. This issue could be countered easily by a combination of pre-coating with BSA solution (30%) in phosphate buffer pH 4.2, and immediate sample mixture with BSA solution after collection. To test the clinical applicability, CSF was collected in seven unique patients using alectinib (n = 1), lorlatinib (n = 2), and osimertinib (n = 4). Measured CSF trough concentrations ranged between 3.37 and 116 ng/mL.


Subject(s)
Tandem Mass Spectrometry , Humans , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Dasatinib , Lactams, Macrocyclic , Chromatography, High Pressure Liquid/methods , Reproducibility of Results
4.
Phys Chem Chem Phys ; 15(45): 19570-4, 2013 Dec 07.
Article in English | MEDLINE | ID: mdl-24141563

ABSTRACT

A molecular-level understanding of why the addition of lithium salts to Organic Ionic Plastic Crystals (OIPCs) produces excellent ionic conductivity is described for the first time. These materials are promising electrolytes for safe, robust lithium batteries, and have been experimentally characterised in some detail. Here, molecular dynamics simulations demonstrate the effects of lithium ion doping on both the structure and dynamics of an OIPC matrix (tetramethylammonium dicyanamide [TMA][DCA]) and illustrate a molecular-level transport model: in the plastic crystal phase lithium ions can form clusters with [DCA](-), and this clustering then in turn creates free volume or defect paths in the remainder of the lattice, which enhances ion conduction.

5.
J Phys Chem B ; 117(4): 1155-65, 2013 Jan 31.
Article in English | MEDLINE | ID: mdl-23289842

ABSTRACT

The thermodynamics of binary sII hydrogen clathrates with secondary guest molecules is studied with Monte Carlo simulations. The small cages of the sII unit cell are occupied by one H(2) guest molecule. Different promoter molecules entrapped in the large cages are considered. Simulations are conducted at a pressure of 1000 atm in a temperature range of 233-293 K. To determine the stabilizing effect of different promoter molecules on the clathrate, the Gibbs free energy of fully and partially occupied sII hydrogen clathrates are calculated. Our aim is to predict what would be an efficient promoter molecule using properties such as size, dipole moment, and hydrogen bonding capability. The gas clathrate configurational and free energies are compared. The entropy makes a considerable contribution to the free energy and should be taken into account in determining stability conditions of binary sII hydrogen clathrates.


Subject(s)
Furans/chemistry , Hydrogen/chemistry , Thermodynamics , Models, Molecular , Monte Carlo Method , Water/chemistry
6.
J Phys Chem B ; 113(18): 6484-94, 2009 May 07.
Article in English | MEDLINE | ID: mdl-19358572

ABSTRACT

Hydrogen bonds play an important role in stabilizing (meta-)stable states in protein folding. Hence, they can potentially be used as a way to bias these states in molecular simulation methods. Previously, Wolf et al. showed that applying repulsive and attractive hydrogen bond biasing potentials in an alternating way significantly accelerates the folding process (Wolf, M. G.; de Leeuw, S. W. Biophys. J. 2008, 94, 3742). As the biasing potentials are only active during a fixed time interval, this alternating scheme does not represent a thermodynamic equilibrium. In this work, we present a Hamiltonian replica exchange molecular dynamics (REMD) scheme that aims to shuffle and reorder hydrogen bonds in the protein backbone. We therefore apply adapted hydrogen bond potentials in a Hamiltonian REMD scheme, which we call hydrogen bond switching (HS). To compare the performance of the HS to a standard REMD method, we performed HS and temperature REMD simulations of a beta-heptapeptide in methanol. Both methods sample the conformational space to a similar extent. As the HS simulation required only five replicas, while the REMD simulation required 20 replicas, the HS method is significantly more efficient. We tested the HS method also on a larger system, 16-residue polyalanine in water. Both of the simulations starting from a completely unfolded and a folded conformation resulted in an ensemble with, apart from the starting structure, similar conformational minima. We can conclude that the HS method provides an efficient way to sample the conformational space of a protein, without requiring knowledge of the folded states beforehand. In addition, these simulations revealed that convergence was hampered by replicas having a preference for specific biasing potentials. As this sorting effect is inherent to any Hamiltonian REMD method, finding a solution will result in an additional increase in the efficiency of Hamiltonian REMD methods in general.


Subject(s)
Hydrogen Bonding , Proteins/chemistry , Protein Conformation , Temperature
7.
Methods Mol Biol ; 474: 153-79, 2008.
Article in English | MEDLINE | ID: mdl-19031066

ABSTRACT

Amyloid fibrils are structures consisting of many proteins with a well-defined conformation. The formation of these fibrils has been the subject of intense research, largely due to their connection to several diseases. We focus here on the computational studies and discuss these from a free-energy point of view. The fibrillogenic properties of many proteins can be predicted and understood by taking the relevant free energies into account in an appropriate way. This is because both the equilibrium and the kinetic properties of the protein system depend on its free-energy landscape. Advanced simulation techniques can be used to understand the relationship between the free-energy landscape of a protein and its three-dimensional structure and propensity to form amyloid fibrils. We give an overview of existing simulation techniques that operate at a molecular level of detail and that are capable of generating relevant free-energy values. The free energies obtained with these methods can be inserted into a statistical-mechanical or kinetic framework to predict mean fibril properties on length scales and time scales that are inaccessible by molecular-scale simulation methods.


Subject(s)
Amyloid/chemistry , Computational Biology/methods , Computer Simulation , Models, Molecular , Protein Structure, Quaternary , Protein Structure, Tertiary , Structure-Activity Relationship , Thermodynamics
8.
J Am Chem Soc ; 130(47): 15772-3, 2008 Nov 26.
Article in English | MEDLINE | ID: mdl-18983145

ABSTRACT

Quantitative prediction of the fibril growth properties of different peptides is conducted with a molecular dynamics approach. Association constants of small peptides used as a model for amyloid formation are calculated, and the results show very good agreement with experiments. Also the free-energy differences associated with two important interactions that characterize fibril growth, namely cross-beta-sheet and lateral interactions, are obtained. These two interactions show different dependencies on the physicochemical properties of the side chains, explaining the variation in fibril morphologies between different peptides.


Subject(s)
Amyloid/chemistry , Peptides/chemistry , Computer Simulation , Probability
9.
J Phys Chem B ; 112(43): 13493-8, 2008 Oct 30.
Article in English | MEDLINE | ID: mdl-18841883

ABSTRACT

We extend umbrella sampling with replica exchange steps to calculate free energies that are important in the self-assembly of peptides. This leads to a more than 10-fold speed up over conventional umbrella sampling, thereby providing a practical method to calculate these free-energy differences. This approach can also observe first-order phase transitions and pinpoint the location of the concomitant boundary. When conformational changes are involved, this method can handle peptides up to approximately 7 residues, providing a rapid and accurate assessment of the thermodynamic properties of model systems, and can thus be used to answer fundamental questions about peptide self-assembly. When no major conformational changes are involved, we expect the size limit to be equal to that of standard molecular dynamics.


Subject(s)
Peptides/chemistry , Peptides/chemical synthesis , Algorithms , Biopolymers/chemistry , Computer Simulation , Energy Transfer , Models, Statistical , Protein Conformation , Software
10.
Biophys J ; 95(10): 4871-8, 2008 Nov 15.
Article in English | MEDLINE | ID: mdl-18676659

ABSTRACT

The initial concentration of monomeric amyloidogenic proteins is a crucial factor in the in vitro formation of amyloid fibrils. We use quantitative atomic force microscopy to study the effect of the initial concentration of human alpha-synuclein on the mean length of mature alpha-synuclein fibrils, which are associated with Parkinson's disease. We determine that the critical initial concentration, below which low-molecular-weight species dominate and above which fibrils are the dominant species, lies at approximately 15 muM, in good agreement with earlier measurements using biochemical methods. In the concentration regime where fibrils dominate, we find that their mean length increases with initial concentration. These results correspond well to the qualitative predictions of a recent statistical-mechanical model of amyloid fibril formation. In addition, good quantitative agreement of the statistical-mechanical model with the measured mean fibril length as a function of initial protein concentration, as well as with the fibril length distributions for several protein concentrations, is found for reasonable values of the relevant model parameters. The comparison between theory and experiment yields, for the first time to our knowledge, an estimate of the magnitude of the free energies associated with the intermolecular interactions that govern alpha-synuclein fibril formation.


Subject(s)
Microscopy, Atomic Force/methods , Models, Chemical , Models, Molecular , alpha-Synuclein/chemistry , alpha-Synuclein/ultrastructure , Computer Simulation , Elasticity , Models, Statistical , Protein Conformation , Stress, Mechanical
11.
Biophys J ; 92(4): 1157-63, 2007 Feb 15.
Article in English | MEDLINE | ID: mdl-17114229

ABSTRACT

We outline a model that describes the interaction of rods that form intertwined bundles. In this simple model, we compare the elastic energy penalty that arises due to the deformation of the rods to the gain in binding energy upon intertwining. We find that, for proper values of the bending Young's modulus and the binding energy, a helical pitch may be found for which the energy of intertwining is most favorable. We apply our description to the problem of Alzheimer's Abeta protein fibrillization. If we forbid configurations that exhibit steric overlap between the protofilaments that make up a protein fibril, our model predicts that fibrils consisting of three protofilaments shall form. This agrees well with experimental results. Our model can also provide an estimate for the helical pitch of suitable fibrils.


Subject(s)
Amyloid beta-Peptides/chemistry , Amyloid/chemistry , Models, Biological , Animals , Humans , Models, Chemical
12.
Biophys J ; 90(9): 3134-45, 2006 May 01.
Article in English | MEDLINE | ID: mdl-16603504

ABSTRACT

We outline a theoretical treatment that describes fibril formation in dilute protein solutions. For this, we combine a theory describing self-assembly and conformational transition with a description of the lateral association of linear chains. Our statistical-mechanical model is able to predict the mean degree of polymerization and the length of the fibrils and their precursors, as well as the weight fractions of the different aggregated species in solution. We find that there appear to exist two regimes as a function of concentration, and as a function of the free energies of protein association: one in which low-molecular weight compounds dominate and one in which the fibrils do. The transition between these regimes can be quite sharp, and becomes sharper as more filaments are allowed to associate into a single fibril. The fraction of fibrils consisting of less than the maximum allowed number of filaments turns out to be negligible, in agreement with experimental studies, where the fibril thickness is found to be practically monodisperse. In addition, we find that the description of the fibril ends has a large effect on the predicted fibril length.


Subject(s)
Amyloid/chemistry , Amyloid/metabolism , Models, Chemical , Protein Structure, Quaternary , Proteins/chemistry , Proteins/metabolism , Amyloidosis/metabolism , Dimerization , Humans , Models, Statistical , Protein Conformation , Solutions
13.
J Comput Chem ; 27(7): 857-67, 2006 May.
Article in English | MEDLINE | ID: mdl-16541426

ABSTRACT

The relative stabilities of homochiral and heterochiral forms of selected dipeptides, AA, AS, AC, AV, AF, AD, AK, tripeptides, AAA, AVA, and an acetylpentapeptide, AcGLSFA, have been calculated using thermodynamic integration protocols and the GROMOS 53A6 force field. Integration pathways have been designed that produce minimal disturbance to the system, including the use of soft atoms, low-energy intermediates, and chiral inversion of the smaller amino acid in the peptide. Comparison of the results obtained by thermodynamic integration between the diastereomeric forms (in explicit water, at 300 K) and from exhaustive global minimum-energy searches for the individual dipeptides (implicit water, epsilon = 78, 0 K) suggests that entropic contributions to the relative stability of the chiral forms are important. This conclusion is supported by the results of explicit calculation of the effect of temperature on the relative stability of alanylvalylalanine diastereomers. The Gibbs free energy calculations predict that at ambient temperature and pressure homochiral dipeptides with small side chains or polar groups in the vicinity of the peptide backbone, AA, AS, and AD, are more stable than their heterochiral counterparts by fractions of a kJ/mol. For bigger side chains, AC, AV, AF, and AK, the heterochiral diastereomers appear to be more stable. Predicted relative stabilities are in line with observations reported in the literature for AE and YY. Excellent agreement is found for the calculated and experimentally determined relative stabilities of the diastereomers of the dipeptide AA and of all-L AcGLSFA and its diastereomer containing D-serine in the central position. Addition of counterions to the solvent box has no significant effects on charged and neutral forms. From the present findings it would appear unlikely that the intrinsic stability difference between homo- and heterochiral dipeptides has been a driving force in a primordial selection process leading to the incorporation of amino acids with a single enantiomeric configuration in natural proteins.


Subject(s)
Amino Acids/chemistry , Computer Simulation , Peptides/chemistry , Dimerization , Models, Molecular , Molecular Conformation , Stereoisomerism , Temperature
14.
J Phys Chem B ; 110(1): 442-6, 2006 Jan 12.
Article in English | MEDLINE | ID: mdl-16471554

ABSTRACT

Processing digital signals on the molecular scale is of great interest. In this paper, we discuss the control of pulselike energy propagation through one-dimensional arrays of dipoles. Three systems are explored. In the first system, a chain of coaxial dipoles is gated by two control dipoles. Changing the orientation of these control dipoles lets us control the transfer of energy in the chain. In the other two systems, the chain-branch system and the two-branch system, two chains are used as an input and the propagation of energy is controlled by sending one or two signals toward the junction. Both systems can operate as a logical AND port. Their geometrical configurations are key to a well-defined control and operation of the AND port.

15.
J Chem Phys ; 122(17): 174702, 2005 May 01.
Article in English | MEDLINE | ID: mdl-15910055

ABSTRACT

We introduce a simple semiempirical anharmonic Kirkwood-Keating potential to model A(x)B(1-x)C-type semiconductors. The potential consists of the Morse strain energy and Coulomb interaction terms. The optical constants of pure components, AB and BC, were employed to fit the potential parameters such as bond-stretching and -bending force constants, dimensionless anharmonicity parameter, and charges. We applied the potential to finite temperature molecular-dynamics simulations on Al(x)Ga(1-x)As for which there is no lattice mismatch. The results were compared with experimental data and those of harmonic Kirkwood-Keating model and of equation-of-motion molecular-dynamics technique. Since the Morse strain potential effectively describes finite temperature damping, we have been able to numerically reproduce experimentally obtained optical properties such as dielectric functions and reflectance. This potential model can be readily generalized for strained alloys.

SELECTION OF CITATIONS
SEARCH DETAIL
...