Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Brain Spine ; 2: 101666, 2022.
Article in English | MEDLINE | ID: mdl-36506292

ABSTRACT

•Neural network approaches show the most potential for automated image analysis of thecervical spine.•Fully automatic convolutional neural network (CNN) models are promising Deep Learning methods for segmentation.•In cervical spine analysis, the biomechanical features are most often studied using finiteelement models.•The application of artificial neural networks and support vector machine models looks promising for classification purposes.•This article provides an overview of the methods for research on computer aided imaging diagnostics of the cervical spine.

2.
Sci Rep ; 12(1): 6362, 2022 04 16.
Article in English | MEDLINE | ID: mdl-35430586

ABSTRACT

Low-field MRI scanners are significantly less expensive than their high-field counterparts, which gives them the potential to make MRI technology more accessible all around the world. In general, images acquired using low-field MRI scanners tend to be of a relatively low resolution, as signal-to-noise ratios are lower. The aim of this work is to improve the resolution of these images. To this end, we present a deep learning-based approach to transform low-resolution low-field MR images into high-resolution ones. A convolutional neural network was trained to carry out single image super-resolution reconstruction using pairs of noisy low-resolution images and their noise-free high-resolution counterparts, which were obtained from the publicly available NYU fastMRI database. This network was subsequently applied to noisy images acquired using a low-field MRI scanner. The trained convolutional network yielded sharp super-resolution images in which most of the high-frequency components were recovered. In conclusion, we showed that a deep learning-based approach has great potential when it comes to increasing the resolution of low-field MR images.


Subject(s)
Deep Learning , Brain/diagnostic imaging , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging , Neural Networks, Computer , Signal-To-Noise Ratio
SELECTION OF CITATIONS
SEARCH DETAIL
...