Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Br J Nutr ; 123(10): 1117-1126, 2020 05 28.
Article in English | MEDLINE | ID: mdl-32077406

ABSTRACT

The study of polyphenols' effects on health has been gaining attention lately. In addition to reacting with important enzymes, altering the cell metabolism, these substances can present either positive or negative metabolic alterations depending on their consumption levels. Naringenin, a citrus flavonoid, already presents diverse metabolic effects. The objective of this work was to evaluate the effect of maternal naringenin supplementation during pregnancy on the tricarboxylic acid cycle activity in offspring's cerebellum. Adult female Wistar rats were divided into two groups: (1) vehicle (1 ml/kg by oral administration (p.o.)) or (2) naringenin (50 mg/kg p.o.). The offspring were euthanised at 7th day of life, and the cerebellum was dissected to analyse citrate synthase, isocitrate dehydrogenase (IDH), α-ketoglutarate dehydrogenase (α-KGDH) and malate dehydrogenase (MDH) activities. Molecular docking used SwissDock web server and FORECASTER Suite, and the proposed binding pose image was created on UCSF Chimera. Data were analysed by Student's t test. Naringenin supplementation during pregnancy significantly inhibited IDH, α-KGDH and MDH activities in offspring's cerebellum. A similar reduction was observed in vitro, using purified α-KGDH and MDH, subjected to pre-incubation with naringenin. Docking simulations demonstrated that naringenin possibly interacts with dehydrogenases in the substrate and cofactor binding sites, inhibiting their function. Naringenin administration during pregnancy may affect cerebellar development and must be evaluated with caution by pregnant women and their physicians.


Subject(s)
Cerebellum/enzymology , Citric Acid Cycle/drug effects , Dietary Supplements , Flavanones/administration & dosage , Maternal Nutritional Physiological Phenomena , Animals , Citrate (si)-Synthase/drug effects , Female , Isocitrate Dehydrogenase/drug effects , Ketoglutarate Dehydrogenase Complex/drug effects , Malate Dehydrogenase/drug effects , Molecular Docking Simulation , Pregnancy , Rats , Rats, Wistar
2.
Behav Brain Res ; 312: 30-8, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27283975

ABSTRACT

Hypoxia-ischemia (HI) represents one of the most common causes of neonatal encephalopathy. The central nervous system injury comprises several mechanisms, including inflammatory, excitotoxicity, and redox homeostasis unbalance leading to cell death and cognitive impairment. Exercise during pregnancy is a potential therapeutic tool due to benefits offered to mother and fetus. Swimming during pregnancy elicits a strong metabolic programming in the offspring's brain, evidenced by increased antioxidant enzymes, mitochondrial biogenesis, and neurogenesis. This article aims to evaluate whether the benefits of maternal exercise are able to prevent behavioral brain injury caused by neonatal HI. Female adult Wistar rats swam before and during pregnancy (30min/day, 5 days/week, 4 weeks). At 7(th) day after birth, the offspring was submitted to HI protocol and, in adulthood (60(th) day), it performed the behavioral tests. It was observed an increase in motor activity in the open field test in HI-rats, which was not prevented by maternal exercise. The rats subjected to maternal swimming presented an improved long-term memory in the object recognition task, which was totally reversed by neonatal HI encephalopathy. BDNF brain levels were not altered; suggesting that HI or maternal exercise effects were BDNF-independent. In summary, our data suggest a beneficial long-term effect of maternal swimming, despite not being robust enough to protect from HI injury.


Subject(s)
Hypoxia-Ischemia, Brain/psychology , Maternal Behavior , Memory, Long-Term , Recognition, Psychology , Animals , Animals, Newborn , Brain/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Female , Hypoxia-Ischemia, Brain/complications , Hypoxia-Ischemia, Brain/metabolism , Male , Memory Disorders/prevention & control , Rats , Rats, Wistar , Swimming
3.
Brain Res ; 1622: 91-101, 2015 Oct 05.
Article in English | MEDLINE | ID: mdl-26119914

ABSTRACT

Pregnancy is a critical period for brain metabolic programming, being affected by individual environment, such as nutrition, stress, and physical exercise. In this context, we previously reported a cerebral antioxidant upregulation and mitochondrial biogenesis in the offspring delivered from exercised mothers, which could provide neuroprotection against neonatal insults. Hypoxia-ischemia (HI) encephalopathy is one of the most studied models of neonatal brain injury; disrupting motor, cognitive, and learning abilities. Physiopathology includes oxidative stress, allied to mitochondria energy production failure, glutamatergic excitotoxicity, and cell death. In this study we evaluated the effect of maternal swimming during pregnancy on offspring׳s brain oxidative status evaluated fourteen days after HI stablishment. Swimming exercise was performed by female adult rats one week before and during pregnancy, in controlled environment. Their offspring was submitted to HI on postnatal day 7, and the brain samples for biochemical assays were obtained in the weaning. Contrary to our expectations, maternal exercise did not prevent the oxidative alterations observed in brain from HI-rats. In a general way, we found a positive modulation in the activities of antioxidant enzymes, measured two weeks after HI, in hippocampus, striatum, and cerebellum of pups delivered from exercised mothers. Reactive species levels were modulated differently in each structure evaluated. Considering the scenery presented, we concluded that HI elicited a neurometabolic adaptation in both brain hemispheres, particularly in hippocampus, parietal cortex, and cerebellum; while striatum appears to be most damaged. The protocol of aerobic maternal exercise was not enough to fully prevent HI-induced brain damages.


Subject(s)
Brain/metabolism , Hypoxia-Ischemia, Brain/metabolism , Prenatal Exposure Delayed Effects , Swimming/physiology , Animals , Animals, Newborn , Antioxidants/metabolism , Disease Models, Animal , Female , Fluoresceins/metabolism , Glutathione/metabolism , Glutathione Peroxidase/metabolism , Oxidative Stress/physiology , Physical Conditioning, Animal/physiology , Pregnancy , Rats, Wistar , Superoxide Dismutase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...