Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Biomed Opt ; 19(3): 36020, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24676382

ABSTRACT

Ovarian cancer is the most deadly gynecologic cancer, a fact which is attributable to poor early detection and survival once the disease has reached advanced stages. Intraoperative laparoscopic volume holographic imaging has the potential to provide simultaneous visualization of surface and subsurface structures in ovarian tissues for improved assessment of developing ovarian cancer. In this ex vivo ovarian tissue study, we assembled a benchtop volume holographic imaging system (VHIS) to characterize the microarchitecture of 78 normal and 40 abnormal tissue specimens derived from ovarian, fallopian tube, uterine, and peritoneal tissues, collected from 26 patients aged 22 to 73 undergoing bilateral salpingo-oophorectomy, hysterectomy with bilateral salpingo-oophorectomy, or abdominal cytoreductive surgery. All tissues were successfully imaged with the VHIS in both reflectance- and fluorescence-modes revealing morphological features which can be used to distinguish between normal, benign abnormalities, and cancerous tissues. We present the development and successful application of VHIS for imaging human ovarian tissue. Comparison of VHIS images with corresponding histopathology allowed for qualitatively distinguishing microstructural features unique to the studied tissue type and disease state. These results motivate the development of a laparoscopic VHIS for evaluating the surface and subsurface morphological alterations in ovarian cancer pathogenesis.


Subject(s)
Histocytochemistry/methods , Holography/methods , Image Processing, Computer-Assisted/methods , Optical Imaging/methods , Ovarian Neoplasms/pathology , Adult , Aged , Fallopian Tubes/anatomy & histology , Fallopian Tubes/pathology , Female , Humans , Middle Aged , Ovary/anatomy & histology , Ovary/pathology , Young Adult
2.
Appl Opt ; 51(29): 6952-61, 2012 Oct 10.
Article in English | MEDLINE | ID: mdl-23052072

ABSTRACT

Confocal microscopy rejects out-of-focus light from the object by scanning a pinhole through the image and reconstructing the image point by point. Volume holographic imaging systems with bright-field illumination have been proposed as an alternative to conventional confocal-type microscopes that does not require scanning of a pinhole or a slit. However, due to wavelength-position degeneracy of the hologram, the high Bragg selectivity of the volume hologram is not utilized and system performance is not optimized. Confocal-rainbow illumination has been proposed as a means to remove the degeneracy and improve optical sectioning in these systems. In prior work, two versions of this system were illustrated: the first version had a separate illumination and imaging grating and the second used a single grating to disperse the incident light and to separate wavelengths in the imaging path. The initial illustration of the dual-grating system has limited depth resolution due to the low selectivity of the illumination grating. The initial illustration of the single-grating system has high depth resolution but does not allow optimization of the illumination path and requires high optical quality of the holographic filters. In this paper we consider the design and tolerance requirements of the dual-grating system for high depth resolution and demonstrate the results with an experimental system. An experimental system with two 1.8 mm thick planar holograms achieved a depth resolution of 7 µm with a field of view of 1.9 mm and a hologram dispersion matching tolerance of ±0.008°.


Subject(s)
Holography/instrumentation , Imaging, Three-Dimensional/instrumentation , Algorithms , Equipment Design , Holography/methods , Imaging, Three-Dimensional/methods , Optical Devices
SELECTION OF CITATIONS
SEARCH DETAIL
...