Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Comput Struct Biotechnol J ; 20: 4952-4968, 2022.
Article in English | MEDLINE | ID: mdl-36147680

ABSTRACT

Antibodies are fundamental effectors of humoral immunity, and have become a highly successful class of therapeutics. There is increasing evidence that antibodies utilize transient homotypic interactions to enhance function, and elucidation of such interactions can provide insights into their biology and new opportunities for their optimization as drugs. Yet the transitory nature of weak interactions makes them difficult to investigate. Capitalizing on their rich structural data and high conservation, we have characterized all the ways that antibody fragment antigen-binding (Fab) regions interact crystallographically. This approach led to the discovery of previously unrealized interfaces between antibodies. While diverse interactions exist, ß-sheet dimers and variable-constant elbow dimers are recurrent motifs. Disulfide engineering enabled interactions to be trapped and investigated structurally and functionally, providing experimental validation of the interfaces and illustrating their potential for optimization. This work provides first insight into previously undiscovered oligomeric interactions between antibodies, and enables new opportunities for their biotherapeutic optimization.

2.
MAbs ; 11(6): 996-1011, 2019.
Article in English | MEDLINE | ID: mdl-31156033

ABSTRACT

Agonism of members of the tumor necrosis factor receptor superfamily (TNFRSF) with monoclonal antibodies is of high therapeutic interest due to their role in immune regulation and cell proliferation. A major hurdle for pharmacologic activation of this receptor class is the requirement for high-order clustering, a mechanism that imposes a reliance in vivo on Fc receptor-mediated crosslinking. This extrinsic dependence represents a potential limitation of virtually the entire pipeline of agonist TNFRSF antibody drugs, of which none have thus far been approved or reached late-stage clinical trials. We show that tetravalent biepitopic targeting enables robust intrinsic antibody agonism for two members of this family, OX40 and DR5, that is superior to extrinsically crosslinked native parental antibodies. Tetravalent biepitopic anti-OX40 engagement co-stimulated OX40low cells, obviated the requirement for CD28 co-signal for T cell activation, and enabled superior pharmacodynamic activity relative to native IgG in a murine vaccination model. This work establishes a proof of concept for an engineering approach that addresses a major gap for the therapeutic activation of this important receptor class.


Subject(s)
Antibodies, Monoclonal/immunology , Immunologic Capping , OX40 Ligand/agonists , Receptors, TNF-Related Apoptosis-Inducing Ligand/agonists , Signal Transduction/immunology , T-Lymphocytes/immunology , Animals , CD28 Antigens/immunology , CHO Cells , Cricetulus , Humans , Jurkat Cells , Mice , Mice, SCID , Mice, Transgenic , OX40 Ligand/immunology , Receptors, Fc/immunology , Receptors, TNF-Related Apoptosis-Inducing Ligand/immunology , T-Lymphocytes/cytology
3.
J Biol Chem ; 293(43): 16803-16817, 2018 10 26.
Article in English | MEDLINE | ID: mdl-30206119

ABSTRACT

The caspase recruitment domain-containing protein 9 (CARD9)-B-cell lymphoma/leukemia 10 (Bcl10) signaling axis is activated in myeloid cells during the innate immune response to a variety of diverse pathogens. This signaling pathway requires a critical caspase recruitment domain (CARD)-CARD interaction between CARD9 and Bcl10 that promotes downstream activation of factors, including NF-κB and the mitogen-activated protein kinase (MAPK) p38. Despite these insights, CARD9 remains structurally uncharacterized, and little mechanistic understanding of its regulation exists. We unexpectedly found here that the CARD in CARD9 binds to Zn2+ with picomolar affinity-a concentration comparable with the levels of readily accessible Zn2+ in the cytosol. NMR solution structures of the CARD9-CARD in the apo and Zn2+-bound states revealed that Zn2+ has little effect on the ground-state structure of the CARD; yet the stability of the domain increased considerably upon Zn2+ binding, with a concomitant reduction in conformational flexibility. Moreover, Zn2+ binding inhibited polymerization of the CARD9-CARD into helical assemblies. Here, we also present a 20-Å resolution negative-stain EM (NS-EM) structure of these filamentous assemblies and show that they adopt a similar helical symmetry as reported previously for filaments of the Bcl10 CARD. Using both bulk assays and direct NS-EM visualization, we further show that the CARD9-CARD assemblies can directly template and thereby nucleate Bcl10 polymerization, a capacity considered critical to propagation of the CARD9-Bcl10 signaling cascade. Our findings indicate that CARD9 is a potential target of Zn2+-mediated signaling that affects Bcl10 polymerization in innate immune responses.


Subject(s)
B-Cell CLL-Lymphoma 10 Protein/metabolism , CARD Signaling Adaptor Proteins/metabolism , Zinc/metabolism , B-Cell CLL-Lymphoma 10 Protein/chemistry , B-Cell CLL-Lymphoma 10 Protein/genetics , CARD Signaling Adaptor Proteins/chemistry , CARD Signaling Adaptor Proteins/genetics , Crystallography, X-Ray , Humans , NF-kappa B/genetics , NF-kappa B/metabolism , Polymerization , Protein Binding , Protein Domains , Signal Transduction , Zinc/chemistry , p38 Mitogen-Activated Protein Kinases/genetics , p38 Mitogen-Activated Protein Kinases/metabolism
4.
Bioorg Med Chem Lett ; 28(1): 15-23, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29169673

ABSTRACT

A novel, potent, and orally bioavailable inhibitor of the bromodomain of CBP, compound 35 (GNE-207), has been identified through SAR investigations focused on optimizing al bicyclic heteroarene to replace the aniline present in the published GNE-272 series. Compound 35 has excellent CBP potency (CBP IC50 = 1 nM, MYC EC50 = 18 nM), a selectively index of >2500-fold against BRD4(1), and exhibits a good pharmacokinetic profile.


Subject(s)
Biphenyl Compounds/chemistry , Drug Design , p300-CBP Transcription Factors/antagonists & inhibitors , Animals , Binding Sites , Biphenyl Compounds/chemical synthesis , Biphenyl Compounds/metabolism , Cell Cycle Proteins , Crystallography, X-Ray , Half-Life , Humans , Hydrogen Bonding , Inhibitory Concentration 50 , Mice , Microsomes, Liver/metabolism , Molecular Dynamics Simulation , Nuclear Proteins/antagonists & inhibitors , Nuclear Proteins/metabolism , Protein Structure, Tertiary , Rats , Structure-Activity Relationship , Transcription Factors/antagonists & inhibitors , Transcription Factors/metabolism , p300-CBP Transcription Factors/metabolism
5.
J Med Chem ; 60(24): 10151-10171, 2017 12 28.
Article in English | MEDLINE | ID: mdl-29155580

ABSTRACT

The epigenetic regulator CBP/P300 presents a novel therapeutic target for oncology. Previously, we disclosed the development of potent and selective CBP bromodomain inhibitors by first identifying pharmacophores that bind the KAc region and then building into the LPF shelf. Herein, we report the "hybridization" of a variety of KAc-binding fragments with a tetrahydroquinoline scaffold that makes optimal interactions with the LPF shelf, imparting enhanced potency and selectivity to the hybridized ligand. To demonstrate the utility of our hybridization approach, two analogues containing unique Asn binders and the optimized tetrahydroquinoline moiety were rapidly optimized to yield single-digit nanomolar inhibitors of CBP with exquisite selectivity over BRD4(1) and the broader bromodomain family.


Subject(s)
High-Throughput Screening Assays/methods , p300-CBP Transcription Factors/antagonists & inhibitors , Animals , Asparagine/chemistry , Asparagine/metabolism , Binding Sites , Cell Cycle Proteins , Crystallography, X-Ray , Female , Fluorescence Resonance Energy Transfer/methods , Mice, Inbred Strains , Molecular Docking Simulation , Nuclear Proteins/antagonists & inhibitors , Protein Domains , Pyrazoles/chemistry , Pyridines/chemistry , Quinolines/chemistry , Transcription Factors/antagonists & inhibitors , p300-CBP Transcription Factors/chemistry , p300-CBP Transcription Factors/metabolism
6.
J Med Chem ; 60(22): 9162-9183, 2017 11 22.
Article in English | MEDLINE | ID: mdl-28892380

ABSTRACT

Inhibition of the bromodomain of the transcriptional regulator CBP/P300 is an especially interesting new therapeutic approach in oncology. We recently disclosed in vivo chemical tool 1 (GNE-272) for the bromodomain of CBP that was moderately potent and selective over BRD4(1). In pursuit of a more potent and selective CBP inhibitor, we used structure-based design. Constraining the aniline of 1 into a tetrahydroquinoline motif maintained potency and increased selectivity 2-fold. Structure-activity relationship studies coupled with further structure-based design targeting the LPF shelf, BC loop, and KAc regions allowed us to significantly increase potency and selectivity, resulting in the identification of non-CNS penetrant 19 (GNE-781, TR-FRET IC50 = 0.94 nM, BRET IC50 = 6.2 nM; BRD4(1) IC50 = 5100 nΜ) that maintained good in vivo PK properties in multiple species. Compound 19 displays antitumor activity in an AML tumor model and was also shown to decrease Foxp3 transcript levels in a dose dependent manner.


Subject(s)
Antineoplastic Agents/pharmacology , CREB-Binding Protein/antagonists & inhibitors , Pyrazoles/pharmacology , Pyridines/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , CREB-Binding Protein/chemistry , Dogs , Female , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , HEK293 Cells , Humans , Macaca fascicularis , Male , Mice , Protein Domains , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Pyrazoles/pharmacokinetics , Pyridines/chemical synthesis , Pyridines/chemistry , Pyridines/pharmacokinetics , RNA/genetics , Rats, Sprague-Dawley , Structure-Activity Relationship , Xenograft Model Antitumor Assays
7.
J Med Chem ; 59(23): 10549-10563, 2016 12 08.
Article in English | MEDLINE | ID: mdl-27682507

ABSTRACT

The single bromodomain of the closely related transcriptional regulators CBP/EP300 is a target of much recent interest in cancer and immune system regulation. A co-crystal structure of a ligand-efficient screening hit and the CBP bromodomain guided initial design targeting the LPF shelf, ZA loop, and acetylated lysine binding regions. Structure-activity relationship studies allowed us to identify a more potent analogue. Optimization of permeability and microsomal stability and subsequent improvement of mouse hepatocyte stability afforded 59 (GNE-272, TR-FRET IC50 = 0.02 µM, BRET IC50 = 0.41 µM, BRD4(1) IC50 = 13 µM) that retained the best balance of cell potency, selectivity, and in vivo PK. Compound 59 showed a marked antiproliferative effect in hematologic cancer cell lines and modulates MYC expression in vivo that corresponds with antitumor activity in an AML tumor model.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Discovery , Pyrazoles/pharmacology , Pyridones/pharmacology , p300-CBP Transcription Factors/antagonists & inhibitors , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dogs , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Female , Humans , Madin Darby Canine Kidney Cells , Mice , Mice, Nude , Models, Molecular , Molecular Structure , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Pyridones/chemical synthesis , Pyridones/chemistry , Structure-Activity Relationship
8.
ACS Med Chem Lett ; 7(5): 531-6, 2016 May 12.
Article in English | MEDLINE | ID: mdl-27190605

ABSTRACT

CBP and EP300 are highly homologous, bromodomain-containing transcription coactivators involved in numerous cellular pathways relevant to oncology. As part of our effort to explore the potential therapeutic implications of selectively targeting bromodomains, we set out to identify a CBP/EP300 bromodomain inhibitor that was potent both in vitro and in cellular target engagement assays and was selective over the other members of the bromodomain family. Reported here is a series of cell-potent and selective probes of the CBP/EP300 bromodomains, derived from the fragment screening hit 4-methyl-1,3,4,5-tetrahydro-2H-benzo[b][1,4]diazepin-2-one.

9.
Nature ; 528(7580): 127-31, 2015 Dec 03.
Article in English | MEDLINE | ID: mdl-26580007

ABSTRACT

Prevailing dogma holds that cell-cell communication through Notch ligands and receptors determines binary cell fate decisions during progenitor cell divisions, with differentiated lineages remaining fixed. Mucociliary clearance in mammalian respiratory airways depends on secretory cells (club and goblet) and ciliated cells to produce and transport mucus. During development or repair, the closely related Jagged ligands (JAG1 and JAG2) induce Notch signalling to determine the fate of these lineages as they descend from a common proliferating progenitor. In contrast to such situations in which cell fate decisions are made in rapidly dividing populations, cells of the homeostatic adult airway epithelium are long-lived, and little is known about the role of active Notch signalling under such conditions. To disrupt Jagged signalling acutely in adult mammals, here we generate antibody antagonists that selectively target each Jagged paralogue, and determine a crystal structure that explains selectivity. We show that acute Jagged blockade induces a rapid and near-complete loss of club cells, with a concomitant gain in ciliated cells, under homeostatic conditions without increased cell death or division. Fate analyses demonstrate a direct conversion of club cells to ciliated cells without proliferation, meeting a conservative definition of direct transdifferentiation. Jagged inhibition also reversed goblet cell metaplasia in a preclinical asthma model, providing a therapeutic foundation. Our discovery that Jagged antagonism relieves a blockade of cell-to-cell conversion unveils unexpected plasticity, and establishes a model for Notch regulation of transdifferentiation.


Subject(s)
Antibodies/therapeutic use , Cell Transdifferentiation , Lung/cytology , Lung/metabolism , Receptors, Notch/metabolism , Animals , Antibodies/immunology , Antibodies/pharmacology , Asthma/drug therapy , Asthma/metabolism , Asthma/pathology , Calcium-Binding Proteins/antagonists & inhibitors , Calcium-Binding Proteins/immunology , Calcium-Binding Proteins/metabolism , Cell Death/drug effects , Cell Division/drug effects , Cell Lineage/drug effects , Cell Tracking , Cell Transdifferentiation/drug effects , Cilia/metabolism , Disease Models, Animal , Female , Goblet Cells/cytology , Goblet Cells/drug effects , Goblet Cells/pathology , Homeostasis/drug effects , Humans , Intercellular Signaling Peptides and Proteins/immunology , Intercellular Signaling Peptides and Proteins/metabolism , Jagged-1 Protein , Jagged-2 Protein , Ligands , Lung/drug effects , Male , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/immunology , Membrane Proteins/metabolism , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Serrate-Jagged Proteins , Signal Transduction/drug effects
10.
Bioorg Med Chem Lett ; 24(24): 5769-5776, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25453817

ABSTRACT

The identification of a new series of RORc inverse agonists is described. Comprehensive structure-activity relationship studies of this reversed sulfonamide series identified potent RORc inverse agonists in biochemical and cellular assays which were also selective against a panel of nuclear receptors. Our work has contributed a compound that may serve as a useful in vitro tool to delineate the complex biological pathways involved in signalling through RORc. An X-ray co-crystal structure of an analogue with RORc has also provided useful insights into the binding interactions of the new series.


Subject(s)
Nuclear Receptor Subfamily 1, Group F, Member 3/agonists , Sulfonamides/chemistry , Binding Sites , Cell Survival/drug effects , Crystallography, X-Ray , Cytokines/biosynthesis , Drug Inverse Agonism , HEK293 Cells , Humans , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/drug effects , Molecular Dynamics Simulation , Nuclear Receptor Subfamily 1, Group F, Member 3/antagonists & inhibitors , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Protein Binding , Protein Structure, Tertiary , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/toxicity
11.
Bioorg Med Chem Lett ; 24(16): 3891-7, 2014 Aug 15.
Article in English | MEDLINE | ID: mdl-25017032

ABSTRACT

Using structure-based drug design principles, we identified opportunities to reduce the lipophilicity of our tertiary sulfonamide RORc inverse agonists. The new analogs possessed improved RORc cellular potencies with >77-fold selectivity for RORc over other nuclear receptors in our cell assay suite. The reduction in lipophilicity also led to an increased plasma-protein unbound fraction and improvements in cellular permeability and aqueous solubility.


Subject(s)
Blood Proteins/chemistry , Cell Membrane Permeability/drug effects , Nuclear Receptor Subfamily 1, Group F, Member 3/agonists , Sulfonamides/pharmacology , Animals , Binding Sites/drug effects , Blood Proteins/metabolism , Crystallography, X-Ray , Dogs , Dose-Response Relationship, Drug , Drug Design , Humans , Hydrophobic and Hydrophilic Interactions , Madin Darby Canine Kidney Cells , Models, Molecular , Molecular Structure , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Rats , Solubility , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/chemistry
12.
Bioorg Med Chem Lett ; 23(24): 6604-9, 2013 Dec 15.
Article in English | MEDLINE | ID: mdl-24239186

ABSTRACT

The structure-activity relationships of T0901317 analogs were explored as RORc inverse agonists using the principles of property- and structure-based drug design. An X-ray co-crystal structure of T0901317 and RORc was obtained and provided molecular insight into why T0901317 functioned as an inverse agonist of RORc; whereas, the same ligand functioned as an agonist of FXR, LXR, and PXR. The structural data was also used to design inhibitors with improved RORc biochemical and cellular activities. The improved inhibitors possessed enhanced selectivity profiles (rationalized using the X-ray crystallographic data) against other nuclear receptors.


Subject(s)
Drug Design , Nuclear Receptor Subfamily 1, Group F, Member 3/agonists , Propanols/chemistry , Sulfonamides/chemistry , Sulfonamides/pharmacology , Binding Sites , Crystallography, X-Ray , Drug Inverse Agonism , Humans , Hydrocarbons, Fluorinated/chemical synthesis , Hydrocarbons, Fluorinated/chemistry , Hydrocarbons, Fluorinated/metabolism , Interferon-gamma/metabolism , Interleukin-17/metabolism , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Molecular Dynamics Simulation , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Protein Binding/drug effects , Protein Structure, Tertiary , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/metabolism
13.
Structure ; 20(10): 1704-14, 2012 Oct 10.
Article in English | MEDLINE | ID: mdl-22921830

ABSTRACT

The NF-κB inducing kinase (NIK) regulates the non-canonical NF-κB pathway downstream of important clinical targets including BAFF, RANKL, and LTß. Despite numerous genetic studies associating dysregulation of this pathway with autoimmune diseases and hematological cancers, detailed molecular characterization of this central signaling node has been lacking. We undertook a systematic cloning and expression effort to generate soluble, well-behaved proteins encompassing the kinase domains of human and murine NIK. Structures of the apo NIK kinase domain from both species reveal an active-like conformation in the absence of phosphorylation. ATP consumption and peptide phosphorylation assays confirm that phosphorylation of NIK does not increase enzymatic activity. Structures of murine NIK bound to inhibitors possessing two different chemotypes reveal conformational flexibility in the gatekeeper residue controlling access to a hydrophobic pocket. Finally, a single amino acid difference affects the ability of some inhibitors to bind murine and human NIK with the same affinity.


Subject(s)
Protein Serine-Threonine Kinases/chemistry , Amino Acid Sequence , Amino Acid Substitution , Animals , Catalytic Domain , Conserved Sequence , Crystallography, X-Ray , Humans , Hydrogen Bonding , Kinetics , Mice , Models, Molecular , Molecular Sequence Data , Peptide Fragments/chemistry , Phosphorylation , Protein Kinase Inhibitors/chemistry , Protein Processing, Post-Translational , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/genetics , Protein Structure, Secondary , Structural Homology, Protein , NF-kappaB-Inducing Kinase
SELECTION OF CITATIONS
SEARCH DETAIL
...