Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38869621

ABSTRACT

Biosilica (BS) and spongin (SPG) from marine sponges are highlighted for their potential to promote bone regeneration. Moreover, 3D printing is introduced as a technology for producing bone grafts with optimized porous structures, allowing for better cell attachment, proliferation, and differentiation. Thus, this study aimed to characterize the BS and BS/SPG 3D printed scaffolds and to evaluate the biological effects in vitro. The scaffolds were printed using an ink containing 4 wt.% of sodium alginate. The physicochemical characteristics of BS and BS/SPG 3D printed scaffolds were analyzed by SEM, EDS, FTIR, porosity, evaluation of mass loss, and pH measurement. For in vitro analysis, the cellular viability of the MC3T3-E1 cell lineage was assessed using the AlamarBlue® assay and confocal microscopy, while genotoxicity and mineralization potential were evaluated through the micronucleus assay and Alizarin Red S, respectively. SEM analysis revealed spicules in BS, the fibrillar structure of SPG, and material degradation over the immersion period. FTIR indicated peaks corresponding to silicon oxide in BS samples and carbon oxide and amine in SPG samples. BS-SPG scaffolds exhibited higher porosity, while BS scaffolds displayed greater mass loss. pH measurements indicated a significant decrease induced by BS, which was mitigated by SPG over the experimental periods. In vitro studies demonstrated the biocompatibility and non-cytotoxicity of scaffold extracts. .Also, the scaffolds promoted cellular differentiation. The micronucleus test further confirmed the absence of genotoxicity. These findings suggest that 3D printed BS and BS/SPG scaffolds may possess desirable morphological and physicochemical properties, indicating in vitro biocompatibility.

2.
Chemosphere ; 334: 138897, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37182709

ABSTRACT

Although the mechanisms of Pb-induced genotoxicity are well established, a wide individual's variation response is seen in biomarkers related to Pb toxicity, despite similar levels of metal exposure. This may be related to intrinsic variations, such as genetic polymorphisms; moreover, very little is known about the impact of genetic variations related to DNA repair system on DNA instability induced by Pb. In this context, the present study aimed to assess the impact of SNPs in enzymes related to DNA repair system on biomarkers related to acute toxicity and DNA damage induced by Pb exposure, in individuals occupationally exposed to the metal. A cross-sectional study was run with 154 adults (males, >18 years) from an automotive batteries' factory, in Brazil. Blood lead levels (BLL) were determined by ICP-MS; biomarkers related to acute toxicity and DNA instability were monitored by the buccal micronucleus cytome (BMNCyt) assay and genotyping of polymorphisms of MLH1 (rs1799977), OGG1 (rs1052133), PARP1 (rs1136410), XPA (rs1800975), XPC (rs2228000) and XRCC1 (rs25487) were performed by TaqMan assays. BLL ranged from 2.0 to 51 µg dL-1 (mean 20 ± 12 µg dL-1) and significant associations between BLL and BMNCyt biomarkers related to cellular proliferation and cytokinetic, cell death and DNA damage were observed. Furthermore, SNPs from the OGG1,XPA and XPC genes were able to modulate interactions in nuclear bud formation (NBUDs) and micronucleus (MNi) events. Taken together, our data provide further evidence that polymorphisms related to DNA repair pathways may modulate Pb-induced DNA damage; studies that investigate the association between injuries to genetic material and susceptibilities in the workplace can provide additional information on the etiology of diseases and the determination of environmentally responsive genes.


Subject(s)
Lead , Occupational Exposure , Adult , Male , Humans , Lead/toxicity , Cross-Sectional Studies , Occupational Exposure/adverse effects , DNA Repair , Polymorphism, Single Nucleotide , DNA Damage , Biomarkers , X-ray Repair Cross Complementing Protein 1/genetics
3.
Bioprocess Biosyst Eng ; 46(7): 1053-1063, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37199771

ABSTRACT

Collagen dressings have been widely used as effective treatments for chronic wounds acting as barrier, protecting the area from infections and participating in the healing process. Collagen from fish skin is biocompatible, presents low immunogenicity and is able of stimulating wound healing. In this scenario, skin of flounder fish (Paralichthys sp.) may constitute a promising source for collagen. Then, our hypothesis is that fish collagen is able of increasing cell proliferation, with no cytotoxicity. In this context, the aim of the present study was to investigate the physicochemical and morphological properties of collagen using scanning electron microscopy (SEM), Energy dispersive X-ray spectroscopy (EDS), mass loss and pH. Moreover, the cytotoxicity and genotoxicity of collagen were studied using in vitro studies (cell viability, comet assay and micronucleus assay). Fish collagen showed no variation of pH and mass weight, with characteristic peaks of collagen in FTIR. Furthermore, all the extracts presented cell viability at least over 50% and no cytotoxicity was observed. Regarding genotoxicity data, the results showed that only the extract of 100% showed higher values in comparison with negative control group for CHO-K1 cell line as depicted by comet and micronucleus assays. Based on the results, it is suggested that fish collagen is biocompatible and present non-cytotoxicity in the in vitro studies, being considered a suitable material for tissue engineering proposals.


Subject(s)
Flounder , Cricetinae , Animals , Collagen/pharmacology , Wound Healing , Skin/chemistry , Fishes , CHO Cells
4.
Front Genet ; 12: 649845, 2021.
Article in English | MEDLINE | ID: mdl-33959150

ABSTRACT

Triclosan (TCS) is an antimicrobial agent widely used in personal care products (PCP) and the di-(2-ethyl hydroxy-phthalate) (DEHP) is a chemical compound derived from phthalic acid, used in medical devices and plastic products with polyvinyl chloride (PVCs). As result of their extensive use, TCS and DEHP have been found in the environment and previous studies demonstrated the association between their exposure and toxic effects, mostly in aquatic organisms, but there is a shortage in the literature concerning the exposure of TCS and DEHP in human cells. The aim of the present study was to assess the impact of exposure to TCS and DEHP, as well as their combinations, on biomarkers related to acute toxicity and DNA instability, in HepG2 cells, by use of cytokinesis-block micronucleus cytome (CBMNCyt) assay. For that, the cultures were exposed to TCS, DEHP and combinations at doses of 0.10, 1.0, and 10 µM for the period of 4 h and the parameters related to DNA damage (i.e., frequencies of micronuclei (MN) and nuclear buds (NBUDs), to cell division (i.e., nuclear division index (NDI) and nuclear division cytotoxic index (NDCI) and to cell death (apoptotic and necrotic cells) were scored. Clear mutagenic effects were seen in cells treated with TCS, DEHP at doses of 1.0 and 10 µM, but no combined effects were observed when the cells were exposed to the combinations of TCS + DEHP. On the other hand, the combination of the toxicants significantly increased the frequencies of apoptotic and necrotic cells, as well as induced alterations of biomarkers related to cell viability (NDI and NDCI), when compared to the groups treated only with TCS or DEHP. Taken together, the results showed that TCS and DEHP are also able to induce acute toxicity and DNA damage in human cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...