Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cells ; 10(1)2021 01 08.
Article in English | MEDLINE | ID: mdl-33430014

ABSTRACT

Angiotensin-(1-7) [Ang-(1-7)]/Mas receptor is a counter-regulatory axis that counteracts detrimental renin-angiotensin system (RAS) effects, especially regarding systemic inflammation, vasopressin (AVP) release, and hypothalamic-pituitary-adrenal (HPA) activation. However, it is not completely understood whether this system may control centrally or systemically the late phase of systemic inflammation. Thus, the aim of this study was to determine whether intracerebroventricular (i.c.v.) administration of Ang-(1-7) can modulate systemic inflammation through the activation of humoral pathways in late phase of endotoxemia. Endotoxemia was induced by systemic injection of lipopolysaccharide (LPS) (1.5 mg/kg, i.v.) in Wistar rats. Ang-(1-7) (0.3 nmol in 2 µL) promoted the release of AVP and attenuated interleukin-6 (IL-6) and nitric oxide (NO) levels but increased interleukin-10 (IL-10) in the serum of the endotoxemic rats. The central administration of Mas receptor antagonist A779 (3 nmol in 2 µL, i.c.v.) abolished these anti-inflammatory effects in endotoxemic rats. Furthermore, Ang-(1-7) applied centrally restored mean arterial blood pressure (MABP) without affecting heart rate (HR) and prevented vascular hyporesponsiveness to norepinephrine (NE) and AVP in animals that received LPS. Together, our results indicate that Ang-(1-7) applied centrally promotes a systemic anti-inflammatory effect through the central Mas receptor and activation of the humoral pathway mediated by AVP.


Subject(s)
Angiotensin I/administration & dosage , Angiotensin I/therapeutic use , Endotoxemia/drug therapy , Hypotension/drug therapy , Peptide Fragments/administration & dosage , Peptide Fragments/therapeutic use , Vasopressins/metabolism , Animals , Endotoxemia/blood , Endotoxemia/complications , Endotoxemia/genetics , Gene Expression Regulation , Hypotension/blood , Hypotension/complications , Hypotension/genetics , Inflammation/blood , Inflammation/complications , Inflammation/pathology , Lactic Acid/blood , Lactic Acid/metabolism , Lipopolysaccharides , Male , Osmolar Concentration , Proto-Oncogene Mas , Proto-Oncogene Proteins/metabolism , Rats, Wistar , Receptors, G-Protein-Coupled/metabolism , Sodium/blood , Vasopressins/genetics
2.
Brain Behav Immun ; 88: 606-618, 2020 08.
Article in English | MEDLINE | ID: mdl-32335195

ABSTRACT

Angiotensin-(1-7) [Ang-(1-7)] is an angiotensin-derived neuropeptide with potential anti-hypertensive and anti-inflammatory properties. However, a possible action of Ang-(1-7) in neuroimmune interactions to regulate inflammatory response has not been explored. Thus, the aim of this study was to determine whether the intracerebroventricular (i.c.v.) administration of Ang-(1-7) can modulate systemic inflammation via sympathetic efferent circuits. Wistar male rats received systemic administration of lipopolysaccharide (LPS) (1.5 mg/Kg). Ang-(1-7) (0.3 nmol in 2 µL) promoted the release of splenic norepinephrine and attenuated tumor necrosis factor (TNF) and nitric oxide (NO), but increased interleukin-10 (IL-10), levels in the serum, spleen, and liver in endotoxemic rats. Furthermore, 6-hydroxydopamine-induced chemical sympathectomy (100 mg/Kg, intravenous) or i.c.v. administration of Mas receptor antagonist A779 (3 nmol in 2 µL) abolished the anti-inflammatory effects of central Ang-(1-7) injection. Moreover, this treatment did not alter the plasmatic LPS-induced corticosterone and vasopressin. The administration of Ang-(1-7) reverted the low resistance in response to catecholamines of rings of thoracic aorta isolated from endotoxemic rats, treated or not, with this peptide by a mechanism dependent on the regulation of NO released from perivascular adipose tissue. Together, our results indicate that Ang-(1-7) regulates systemic inflammation and vascular hyporesponsiveness in endotoxemia via activation of a central Mas receptors/sympathetic circuits/norepinephrine axis and provide novel mechanistic insights into the anti-inflammatory Ang-(1-7) properties.


Subject(s)
Endotoxemia , Angiotensin I , Animals , Endotoxemia/drug therapy , Male , Peptide Fragments , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...