Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Chemosphere ; 304: 135169, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35671813

ABSTRACT

Domestic sewage is an important source of pollutants in aquatic ecosystems and includes both microplastics (MPs) and pharmaceuticals and personal care products (PPCPs). This study sought to assess the biological effects of the interaction between plastic particles and the antibacterial agent triclosan (TCS). The study relied on the swamp ghost crab Ucides cordatus as a model. Herein polyethylene particles were contaminated with triclosan solution. Triclosan concentrations in the particles were then chemically analyzed. Swamp ghost crab specimens were exposed to experimental compounds (a control, microplastics, and microplastics with triclosan) for 7 days. Samplings were performed on days 3 (T3) and 7 (T7). Gill, hepatopancreas, muscle and hemolymph tissue samples were collected from the animals to evaluate the biomarkers ethoxyresorufin O-deethylase (EROD), dibenzylfluorescein dealkylase (DBF), glutathione S-transferase (GST), glutathione peroxidase (GPx), reduced glutathione (GSH), lipid peroxidation (LPO), DNA strands break (DNA damage), cholinesterase (ChE) through protein levels and neutral red retention time (NRRT). Water, organism, and microplastic samples were collected at the end of the assay for post-exposure chemical analyses. Triclosan was detected in the water and crab tissue samples, results which indicate that microplastics serve as triclosan carriers. Effects on the gills of organisms exposed to triclosan-spiked microplastics were observed as altered biomarker results (EROD, GST, GPx, GSH, LPO, DNA damage and NRRT). The effects were more closely associated with microplastic contaminated with triclosan exposure than with microplastic exposure, since animals exposed only to microplastics did not experience significant effects. Our results show that microplastics may be important carriers of substances of emerging interest in marine environments in that they contaminate environmental matrices and have adverse effects on organisms exposed to these stressors.


Subject(s)
Anti-Infective Agents , Brachyura , Triclosan , Water Pollutants, Chemical , Animals , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Biomarkers/metabolism , Brachyura/metabolism , Cytochrome P-450 CYP1A1/metabolism , Ecosystem , Glutathione Peroxidase/metabolism , Glutathione Transferase/metabolism , Microplastics/toxicity , Plastics/metabolism , Polyethylene/metabolism , Triclosan/metabolism , Water/metabolism , Water Pollutants, Chemical/metabolism , Wetlands
2.
Arch Environ Contam Toxicol ; 79(1): 101-110, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32279094

ABSTRACT

Urban waste is a complex mixture of different substances, including microplastics and pharmaceuticals and personal care products. Microplastics have a high affinity for hydrophobic substances. One of these substances is triclosan, a bactericide used in a variety of hygiene products. Therefore, microplastics (MPs) may serve as a vector between triclosan and aquatic organisms. The current study sought to evaluate the effects of the interaction between microplastics and triclosan based on a mechanistic approach in which the oyster Crassostrea brasiliana was used as a model. The organisms were exposed to three conditions: the control, microplastic (MP), and microplastic contaminated with triclosan (MPT). The organisms were exposed for 3 or 7 days. After the exposure time, hemolymph was sampled for performing the neutral red retention time assay and, subsequently, the gills, digestive glands, and adductor muscles were dissected for measuring biomarkers responses (EROD, DBF, GST, GPx, GSH, lipid peroxidation, DNA strand breaks, and AChE). Our results demonstrate combined effects of MPs associated with triclosan on oyster physiology and biochemistry, as well as on lysosomal membrane stability. These results contribute to understanding the effects of contaminants of emerging concern and microplastics on aquatic organisms.


Subject(s)
Crassostrea/drug effects , Environmental Biomarkers/drug effects , Microplastics/toxicity , Triclosan/toxicity , Water Pollutants, Chemical/toxicity , Animals , Brazil , Crassostrea/genetics , Crassostrea/metabolism , DNA Damage , Gills/drug effects , Gills/metabolism , Lipid Peroxidation/drug effects , Microplastics/metabolism , Models, Theoretical , Triclosan/metabolism , Water Pollutants, Chemical/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...