Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 11: 596245, 2020.
Article in English | MEDLINE | ID: mdl-33304341

ABSTRACT

Most caliciviruses are refractory to replication in cell culture and only a few members of the family propagate in vitro. Rabbit vesivirus (RaV) is unique due to its ability to grow to high titers in several animal and human cell lines. This outstanding feature makes RaV an ideal candidate for reverse genetics studies, an invaluable tool to understand the molecular basis of virus replication, the biological functions of viral genes and their roles in pathogenesis. The recovery of viruses from a cDNA clone is a prerequisite for reverse genetics studies. In this work, we constructed a RaV infectious cDNA clone using a plasmid expression vector, under the control of bacteriophage T7 RNA-polymerase promoter. The transfection of permissive cells with this plasmid DNA in the presence of T7 RNA-polymerase, provided in trans by a helper recombinant poxvirus, led to de novo synthesis of RNA transcripts that emulated the viral genome. The RaV progeny virus produced the typical virus-induced cytopathic effect after several passages of cell culture supernatants. Similarly, infectious RaV was recovered when the transcription step was performed in vitro, prior to transfection, provided that a 5'-cap structure was added to the 5' end of synthetic genome-length RNAs. In this work, we report an efficient and consistent RaV rescue system based on a cDNA transcription vector, as a tool to investigate calicivirus biology through reverse genetics.

2.
Transbound Emerg Dis ; 66(6): 2218-2226, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31322320

ABSTRACT

The study of myxoma virus (MYXV) infections in the European rabbit (Oryctolagus cuniculus) has produced one of the most accepted host-pathogen evolutionary models. To date, myxomatosis has been limited to the European rabbit with sporadic reports in hares. However, reports of widespread mortalities in the Iberian hare (Lepus granatensis) with myxomatosis-like clinical signs indicate a potential species jump has occurred. The presence of MYXV DNA was confirmed by PCR in 244 samples received from regional veterinary services, animal health laboratories, hunters or rangers over a 5-month period. PCR analysis of 4 MYXV positive hare samples revealed a 2.8 kb insertion located within the M009 gene with respect to MYXV. The presence of this insertion was subsequently confirmed in 20 samples from 18 Spanish provinces. Sanger sequencing and subsequent analysis show that the insert contained 4 ORFs which are phylogenetically related to MYXV genes M060, M061, M064 and M065. The complete MYXV genome from hare tissue was sequenced using Ion torrent next-generation technology and a summary of the data presented here. With the exception of the inserted region, the virus genome had no large scale modifications and 110 mutations with respect to the MYXV reference strain Lausanne were observed. The next phase in the evolution of MYXV has taken place as a host species jump from the European rabbit to the Iberian hare an occurrence which could have important effects on this naïve population.


Subject(s)
Hares/virology , Myxoma virus/genetics , Poxviridae Infections/virology , Animals , DNA, Viral/genetics , Genome, Viral , Mutagenesis, Insertional , Phylogeny , Polymerase Chain Reaction , Poxviridae Infections/veterinary , Rabbits , Spain , Whole Genome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL
...