Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem A ; 126(32): 5375-5385, 2022 Aug 18.
Article in English | MEDLINE | ID: mdl-35925760

ABSTRACT

Glycolaldehyde (GAld) is a C2 water-soluble aldehyde produced during the atmospheric oxidation of isoprene and many other species and is commonly found in cloudwater. Previous work has established that glycolaldehyde evaporates more readily from drying aerosol droplets containing ammonium sulfate (AS) than does glyoxal, methylglyoxal, or hydroxyacetone, which implies that it does not oligomerize as quickly as these other species. Here, we report NMR measurements of glycolaldehyde's aqueous-phase reactions with AS, methylamine, and glycine. Reaction rate constants are smaller than those of respective glyoxal and methylglyoxal reactions in the pH range of 3-6. In follow-up cloud chamber experiments, deliquesced glycine and AS seed particles were found to take up glycolaldehyde and methylamine and form brown carbon. At very high relative humidity, these changes were more than 2 orders of magnitude faster than predicted by our bulk liquid NMR kinetics measurements, suggesting that reactions involving surface-active species at crowded air-water interfaces may play an important role. The high-resolution liquid chromatography-electrospray ionization-mass spectrometric analysis of filter extracts of unprocessed AS + GAld seed particles identified sugar-like C6 and C12 GAld oligomers, including proposed product 3-deoxyglucosone, with and without modification by reactions with ammonia to diimine and imidazole forms. Chamber exposure to methylamine gas, cloud processing, and simulated sunlight increased the incorporation of both ammonia and methylamine into oligomers. Many C4-C16 imidazole derivatives were detected in an extract of chamber-exposed aerosol along with a predominance of N-derivatized C6 and C12 glycolaldehyde oligomers, suggesting that GAld is capable of forming brown carbon SOA.


Subject(s)
Amines , Carbon , Acetaldehyde/analogs & derivatives , Aerosols/chemistry , Amines/chemistry , Ammonia , Ammonium Sulfate/chemistry , Glycine/chemistry , Glyoxal/chemistry , Imidazoles , Methylamines/chemistry , Pyruvaldehyde/chemistry , Water/chemistry
2.
J Phys Chem A ; 122(21): 4854-4860, 2018 May 31.
Article in English | MEDLINE | ID: mdl-29741899

ABSTRACT

In order to predict the amount of secondary organic aerosol formed by heterogeneous processing of methylglyoxal, uptake coefficients (γ) and estimates of uptake reversibility are needed. Here, uptake coefficients are extracted from chamber studies involving ammonium sulfate and glycine seed aerosol at high relative humidity (RH ≥ 72%). Methylglyoxal uptake coefficients on prereacted glycine aerosol particles had a strong dependence on RH, increasing from γ = 0.4 × 10-3 to 5.7 × 10-3 between 72 and 99% RH. Continuous methylglyoxal losses were also observed in the presence of aqueous ammonium sulfate at 95% RH (γAS,wet = 3.7 ± 0.8 × 10-3). Methylglyoxal uptake coefficients measured at ≥95% RH are larger than those reported for glyoxal on nonacidified, aqueous aerosol surfaces at 90% RH. Slight curvature in first-order uptake plots suggests that methylglyoxal uptake onto aqueous aerosol surfaces is not entirely irreversible after 20 min. Methylglyoxal uptake by cloud droplets was rapid and largely reversible, approaching equilibrium within the 1 min mixing time of the chamber. PTR-MS measurements showed that each cloud event extracted 3 to 8% of aerosol-phase methylglyoxal and returned it to the gas phase, likely by an oligomer hydrolysis mechanism.

3.
Environ Sci Technol ; 52(7): 4061-4071, 2018 04 03.
Article in English | MEDLINE | ID: mdl-29510022

ABSTRACT

Aqueous methylglyoxal chemistry has often been implicated as an important source of oligomers in atmospheric aerosol. Here we report on chemical analysis of brown carbon aerosol particles collected from cloud cycling/photolysis chamber experiments, where gaseous methylglyoxal and methylamine interacted with glycine, ammonium, or methylammonium sulfate seed particles. Eighteen N-containing oligomers were identified in the particulate phase by liquid chromatography/diode array detection/electrospray ionization high-resolution quadrupole time-of-flight mass spectrometry. Chemical formulas were determined and, for 6 major oligomer products, MS2 fragmentation spectra were used to propose tentative structures and mechanisms. Electronic absorption spectra were calculated for six tentative product structures by an ab initio second order algebraic-diagrammatic-construction/density functional theory approach. For five structures, matching calculated and measured absorption spectra suggest that they are dominant light-absorbing species at their chromatographic retention times. Detected oligomers incorporated methylglyoxal and amines, as expected, but also pyruvic acid, hydroxyacetone, and significant quantities of acetaldehyde. The finding that ∼80% (by mass) of detected oligomers contained acetaldehyde, a methylglyoxal photolysis product, suggests that daytime methylglyoxal oligomer formation is dominated by radical addition mechanisms involving CH3CO*. These mechanisms are evidently responsible for enhanced browning observed during photolytic cloud events.


Subject(s)
Nitrogen , Pyruvaldehyde , Aerosols , Gas Chromatography-Mass Spectrometry , Photolysis
4.
Environ Sci Technol ; 51(13): 7458-7466, 2017 Jul 05.
Article in English | MEDLINE | ID: mdl-28562016

ABSTRACT

The effects of methylglyoxal uptake on the physical and optical properties of aerosol containing amines or ammonium sulfate were determined before and after cloud processing in a temperature- and RH-controlled chamber. The formation of brown carbon was observed upon methylglyoxal addition, detected as an increase in water-soluble organic carbon mass absorption coefficients below 370 nm and as a drop in single-scattering albedo at 450 nm. The imaginary refractive index component k450 reached a maximum value of 0.03 ± 0.009 with aqueous glycine aerosol particles. Browning of solid particles occurred at rates limited by chamber mixing (<1 min), and in liquid particles occurred more gradually, but in all cases occurred much more rapidly than in bulk aqueous studies. Further browning in AS and methylammonium sulfate seeds was triggered by cloud events with chamber lights on, suggesting photosensitized brown carbon formation. Despite these changes in optical aerosol characteristics, increases in dried aerosol mass were rarely observed (<1 µg/m3 in all cases), consistent with previous experiments on methylglyoxal. Under dry, particle-free conditions, methylglyoxal reacted (presumably on chamber walls) with methylamine with a rate constant k = (9 ± 2) × 10-17 cm3 molecule-1 s-1 at 294 K and activation energy Ea = 64 ± 37 kJ/mol.


Subject(s)
Aerosols , Ammonium Compounds , Pyruvaldehyde , Amines , Carbon
SELECTION OF CITATIONS
SEARCH DETAIL
...