Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Front Robot AI ; 10: 1244656, 2023.
Article in English | MEDLINE | ID: mdl-38023588

ABSTRACT

Collaborative robots (in short: cobots) have the potential to assist workers with physically or cognitive demanding tasks. However, it is crucial to recognize that such assistance can have both positive and negative effects on job quality. A key aspect of human-robot collaboration is the interdependence between human and robotic tasks. This interdependence influences the autonomy of the operator and can impact the work pace, potentially leading to a situation where the human's work pace becomes reliant on that of the robot. Given that autonomy and work pace are essential determinants of job quality, design decisions concerning these factors can greatly influence the overall success of a robot implementation. The impact of autonomy and work pace was systematically examined through an experimental study conducted in an industrial assembly task. 20 participants engaged in collaborative work with a robot under three conditions: human lead (HL), fast-paced robot lead (FRL), and slow-paced robot lead (SRL). Perceived workload was used as a proxy for job quality. To assess the perceived workload associated with each condition was assessed with the NASA Task Load Index (TLX). Specifically, the study aimed to evaluate the role of human autonomy by comparing the perceived workload between HL and FRL conditions, as well as the influence of robot pace by comparing SRL and FRL conditions. The findings revealed a significant correlation between a higher level of human autonomy and a lower perceived workload. Furthermore, a decrease in robot pace was observed to result in a reduction of two specific factors measuring perceived workload, namely cognitive and temporal demand. These results suggest that interventions aimed at increasing human autonomy and appropriately adjusting the robot's work pace can serve as effective measures for optimizing the perceived workload in collaborative scenarios.

2.
Ergonomics ; 64(6): 712-721, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33402050

ABSTRACT

The supportive effect of arm-support exoskeletons has been mainly studied for single postures or movements. The aim of this study is to analyse the effect of such an exoskeleton on shoulder muscle activity and perceived exertion, in six tasks of plasterers, each including multiple arm movements. The tasks of 'applying gypsum', 'screeding' and 'finishing' were performed at a ceiling and a wall, with exoskeleton (Exo) and without (NoExo). EMG was recorded of six muscles involved in upper arm elevation, four agonists and two antagonists, and plasterers rated their perceived exertion (RPE). In all tasks, the EMG amplitudes of three agonist muscles, Trapezius and Medial Deltoid, and Biceps Brachii, were lower in Exo vs NoExo, while the agonist, Anterior Deltoid, showed lower EMG values in Exo in most tasks. None of the antagonists (Triceps Brachii, Pectoralis Major) showed increased EMG values in the Exo condition. RPE's were lower in Exo condition for all tasks, except for 'applying gypsum to the wall'. Overall, the exoskeleton seems to reduce loads in realistic plastering tasks. Practitioner summary: Exoskeletons are an emerging technology in the field of ergonomics. Passive arm support exoskeletons have mainly been tested in lab studies using continuous overhead work, involving one posture or movement. However, in reality, working tasks generally involve multiple movements. This study investigates the effectiveness of an arm support exoskeleton in work that requires multiple arm movements, specifically in plastering. Muscle activity, as well as perceived exertion were both reduced when working with an exoskeleton. Abbreviations: Exo: with exoskeleton; NoExo: without exoskeleton; RPE: rated perceived exertion; EMG: electromyography; Trap: upper trapezius; AD: anterior deltoid; MD: medial deltoid; BB: biceps brachii; TB: triceps brachii; PM: pectoralis major; RPD: rated perceived discomfort; p50: 50th percentile; p90: 90th percentile; MVC: maximum voluntary contraction; GEE: generalised estimated equations.


Subject(s)
Exoskeleton Device , Superficial Back Muscles , Arm , Electromyography , Humans , Physical Exertion
3.
Ergonomics ; 64(6): 685-711, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33369518

ABSTRACT

This study is an updated systematic review of papers published in the last 5 years on industrial back-support exoskeletons. The research questions were aimed at addressing the recent findings regarding objective (e.g. body loading, user performance) and subjective evaluations (e.g. user satisfaction), potential side effects, and methodological aspects of usability testing. Thirteen studies of active and twenty of passive exoskeletons were identified. The exoskeletons were tested during lifting and bending tasks, predominantly in laboratory settings and among healthy young men. In general, decreases in participants' back-muscle activity, peak L5/S1 moments and spinal compression forces were reported. User endurance during lifting and static bending improved, but performance declined during tasks that required increased agility. The overall user satisfaction was moderate. Some side effects were observed, including increased abdominal/lower-limb muscle activity and changes in joint angles. A need was identified for further field studies, involving industrial workers, and reflecting actual work situations. Practitioner summary: Due to increased research activity in the field, a systematic review was performed of recent studies on industrial back-support exoskeletons, addressing objective and subjective evaluations, side effects, and methodological aspects of usability testing. The results indicate the efficiency of exoskeletons in back-load reduction and a need for further studies in real work situations. Abbrevaitions: BB: biceps brachii; BF: biceps femoris; CoM: centre of mass; DA: deltoideus anterior; EMG: electromyography; ES: erector spinae; ES-C: erector spinae-cervical; ESI: erector spinae iliocostalis; ESI-L: erector spinae iliocostalis-lumborum; ESL: erector spinae longissimus; ES-L: erector spinae-lumbar; ESL-L: erector spinae longissimus-lumborum; ESL-T: erector spinae longissimus-thoracis; ES-T: erector spinae-thoracic; GM: glutaeus maximus; LBP: low back pain; LD: latissimus dorsi; LPD: local perceived discomfort scale; LPP: local perceived pressure scale; MS: multifidus spinae; MSD: musculoskeletal disorder; M-SFS: modified spinal function sort; NMV: no mean value provided; OA: obliquus abdominis (internus and externus); OEA: obliquus externus abdominis; OIA : obliquus internus abdominis; RA: rectus abdominis; RF: rectus femoris; RoM: range of motion; SUS: system usability scale; T: trapezius (pars Ascendens and Descendens); TA: trapezius pars ascendens; TC: mid-cervical trapezius; TD: trapezius pars descendens; VAS: visual analog scale; VL: vastus lateralis; VM: vastus medialis.


Subject(s)
Exoskeleton Device , Electromyography , Humans , Lumbosacral Region , Male , Muscle, Skeletal , Paraspinal Muscles , Range of Motion, Articular
4.
Sensors (Basel) ; 22(1)2021 Dec 23.
Article in English | MEDLINE | ID: mdl-35009627

ABSTRACT

The risk of low-back pain in manual material handling could potentially be reduced by back-support exoskeletons. Preferably, the level of exoskeleton support relates to the required muscular effort, and therefore should be proportional to the moment generated by trunk muscle activities. To this end, a regression-based prediction model of this moment could be implemented in exoskeleton control. Such a model must be calibrated to each user according to subject-specific musculoskeletal properties and lifting technique variability through several calibration tasks. Given that an extensive calibration limits the practical feasibility of implementing this approach in the workspace, we aimed to optimize the calibration for obtaining appropriate predictive accuracy during work-related tasks, i.e., symmetric lifting from the ground, box stacking, lifting from a shelf, and pulling/pushing. The root-mean-square error (RMSE) of prediction for the extensive calibration was 21.9 nm (9% of peak moment) and increased up to 35.0 nm for limited calibrations. The results suggest that a set of three optimally selected calibration trials suffice to approach the extensive calibration accuracy. An optimal calibration set should cover each extreme of the relevant lifting characteristics, i.e., mass lifted, lifting technique, and lifting velocity. The RMSEs for the optimal calibration sets were below 24.8 nm (10% of peak moment), and not substantially different than that of the extensive calibration.


Subject(s)
Exoskeleton Device , Biomechanical Phenomena , Calibration , Electromyography , Lifting , Lumbosacral Region , Muscle, Skeletal
5.
Wearable Technol ; 2: e11, 2021.
Article in English | MEDLINE | ID: mdl-38486625

ABSTRACT

The large-scale adoption of occupational exoskeletons (OEs) will only happen if clear evidence of effectiveness of the devices is available. Performing product-specific field validation studies would allow the stakeholders and decision-makers (e.g., employers, ergonomists, health, and safety departments) to assess OEs' effectiveness in their specific work contexts and with experienced workers, who could further provide useful insights on practical issues related to exoskeleton daily use. This paper reviews present-day scientific methods for assessing the effectiveness of OEs in laboratory and field studies, and presents the vision of the authors on a roadmap that could lead to large-scale adoption of this technology. The analysis of the state-of-the-art shows methodological differences between laboratory and field studies. While the former are more extensively reported in scientific papers, they exhibit limited generalizability of the findings to real-world scenarios. On the contrary, field studies are limited in sample sizes and frequently focused only on subjective metrics. We propose a roadmap to promote large-scale knowledge-based adoption of OEs. It details that the analysis of the costs and benefits of this technology should be communicated to all stakeholders to facilitate informed decision making, so that each stakeholder can develop their specific role regarding this innovation. Large-scale field studies can help identify and monitor the possible side-effects related to exoskeleton use in real work situations, as well as provide a comprehensive scientific knowledge base to support the revision of ergonomics risk-assessment methods, safety standards and regulations, and the definition of guidelines and practices for the selection and use of OEs.

6.
J Biomech ; 105: 109795, 2020 05 22.
Article in English | MEDLINE | ID: mdl-32423541

ABSTRACT

The number one cause of disability in the world is low-back pain, with mechanical loading as one of the major risk factors. To reduce mechanical loading, exoskeletons have been introduced in the workplace. Substantial reductions in back muscle activity were found when using the exoskeleton during static bending and manual materials handling. However, most exoskeletons only have one joint at hip level, resulting in loss of range of motion and shifting of the exoskeleton relative to the body. To address these issues, a new exoskeleton design has been developed and tested. The present study investigated the effect of the SPEXOR passive exoskeleton on compression forces, moments, muscle activity and kinematics during static bending at six hand heights and during lifting of a box of 10 kg from around ankle height using three techniques: Free, Squat and Stoop. For static bending, the exoskeleton reduced the compression force by 13-21% depending on bending angle. Another effect of the exoskeleton was that participants substantially reduced lumbar flexion. While lifting, the exoskeleton reduced the peak compression force, on average, by 14%. Lifting technique did not modify the effect of the exoskeleton such that the reduction in compression force was similar. In conclusion, substantial reductions in compression forces were found as a result of the support generated by the exoskeleton and changes in behavior when wearing the exoskeleton. For static bending, lumbar flexion was reduced with the exoskeleton, indicating reduced passive tissue strain. In addition, the reduced peak compression force could reduce the risk of compression induced tissue failure during lifting.


Subject(s)
Back Muscles , Exoskeleton Device , Biomechanical Phenomena , Electromyography , Humans , Lifting
7.
J Biomech ; 102: 109650, 2020 03 26.
Article in English | MEDLINE | ID: mdl-32005548

ABSTRACT

Back support exoskeletons are designed to prevent work-related low-back pain by reducing mechanical loading. For actuated exoskeletons, support based on moments actively produced by the trunk muscles appears a viable approach. The moment can be estimated by a biomechanical model. However, one of the main challenges here is the feasibility of recording the required input variables (kinematics, EMG data, ground reaction forces) to run the model. The aim of this study was to evaluate how accurate different selections of input variables can estimate actively generated moments around L5/S1. Different multivariate regression analyses were performed using a dataset consisting of spinal load, body kinematics and trunk muscle activation levels during different lifting conditions with and without an exoskeleton. The accuracy of the resulting models depended on the number and type of input variables and the regression model order. The current study suggests that third-order polynomial regression of EMG signals of one or two bilateral back muscle pairs together with exoskeleton trunk and hip angle suffices to accurately estimate the actively generated muscle moment around L5/S1, and thereby design a proper control system for back support exoskeletons.


Subject(s)
Back Muscles/physiology , Exoskeleton Device , Mechanical Phenomena , Adult , Biomechanical Phenomena , Humans , Lifting , Low Back Pain/prevention & control , Male , Regression Analysis
8.
J Biomech ; 102: 109486, 2020 03 26.
Article in English | MEDLINE | ID: mdl-31718821

ABSTRACT

Low-back pain is the number one cause of disability in the world, with mechanical loading as one of the major risk factors. Exoskeletons have been introduced in the workplace to reduce low back loading. During static forward bending, exoskeletons have been shown to reduce back muscle activity by 10% to 40%. However, effects during dynamic lifting are not well documented. Relative support of the exoskeleton might be smaller in lifting compared to static bending due to higher peak loads. In addition, exoskeletons might also result in changes in lifting behavior, which in turn could affect low back loading. The present study investigated the effect of a passive exoskeleton on peak compression forces, moments, muscle activity and kinematics during symmetric lifting. Two types (LOW and HIGH) of the device, which generate peak support moments at large and moderate flexion angles, respectively, were tested during lifts from knee and ankle height from a near and far horizontal position, with a load of 10 kg. Both types of the trunk exoskeleton tested here reduced the peak L5S1 compression force by around 5-10% for lifts from the FAR position from both KNEE and ANKLE height. Subjects did adjust their lifting style when wearing the device with a 17% reduced peak trunk angular velocity and 5 degrees increased lumbar flexion, especially during ANKLE height lifts. In conclusion, the exoskeleton had a minor and varying effect on the peak L5S1 compression force with only significant differences in the FAR lifts.


Subject(s)
Back/physiology , Exoskeleton Device , Lifting , Adult , Back Muscles/physiology , Biomechanical Phenomena , Electromyography , Humans , Male , Weight-Bearing , Young Adult
9.
J Biomech ; 91: 14-22, 2019 Jun 25.
Article in English | MEDLINE | ID: mdl-31122661

ABSTRACT

With mechanical loading as the main risk factor for LBP, exoskeletons (EXO) are designed to reduce the load on the back by taking over part of the moment normally generated by back muscles. The present study investigated the effect of an active exoskeleton, controlled using three different control modes (INCLINATION, EMG & HYBRID), on spinal compression forces during lifting with various techniques. Ten healthy male subjects lifted a 15 kg box, with three lifting techniques (free, squat & stoop), each of which was performed four times, once without EXO and once each with the three different control modes. Using inverse dynamics, we calculated L5/S1 joint moments. Subsequently, we estimated spine forces using an EMG-assisted trunk model. Peak compression forces substantially decreased by 17.8% when wearing the EXO compared to NO EXO. However, this reduction was partly, by about one third, attributable to a reduction of 25% in peak lifting speed when wearing the EXO. While subtle differences in back load patterns were seen between the three control modes, no differences in peak compression forces were found. In part, this may be related to limitations in the torque generating capacity of the EXO. Therefore, with the current limitations of the motors it was impossible to determine which of the control modes was best. Despite these limitations, the EXO still reduced both peak and cumulative compression forces by about 18%.


Subject(s)
Exoskeleton Device , Lifting , Adolescent , Adult , Back/physiology , Biomechanical Phenomena , Electromyography/methods , Humans , Male , Posture/physiology , Spine/physiology , Torque , Weight-Bearing/physiology , Young Adult
10.
J Biomech ; 83: 97-103, 2019 01 23.
Article in English | MEDLINE | ID: mdl-30514627

ABSTRACT

With mechanical loading as the main risk factor for LBP in mind, exoskeletons are designed to reduce the load on the back by taking over a part of the required moment. The present study assessed the effect of a passive exoskeleton on back and abdominal muscle activation, hip and lumbar flexion and on the contribution of both the human and the exoskeleton to the L5/S1 net moment, during static bending at five different hand heights. Two configurations of the exoskeleton (LOW & HIGH) differing in angle-torque characteristics were tested. L5/S1 moments generated by the subjects were significantly reduced (15-20% for the most effective type) at all hand heights. LOW generated 4-11 Nm more support than HIGH at 50%, 25% and 0% upright stance hand height and HIGH generated 4-5 Nm more support than LOW at 100% and 75%. Significant reductions (11-57%) in back muscle activity were found compared to WITHOUT for both exoskeletons for some conditions. However, EMG reductions compared to WITHOUT were highly variable across subjects and not always significant. The device allowed for substantial lumbar bending (up to 70°) so that a number of participants showed the flexion-relaxation phenomenon, which prevented further reduction of back EMG by the device and even an increase from 2% to 6% MVC in abdominal activity at 25% hand height. These results indicate that flexion relaxation and its interindividual variation should be considered in future exoskeleton developments.


Subject(s)
Lumbosacral Region/physiology , Abdominal Muscles/physiology , Adult , Back Muscles/physiology , Biomechanical Phenomena , Electromyography , Humans , Male , Posture , Torque , Weight-Bearing
11.
Appl Ergon ; 70: 148-155, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29866305

ABSTRACT

The aim of this study was to evaluate the effect of a passive upper body exoskeleton on muscle activity, perceived musculoskeletal effort, local perceived pressure and subjective usability for a static overhead task. Eight participants (4 male, 4 female) held a load (0 kg and 2 kg) three times overhead for a duration of 30 s each, both with and without the exoskeleton. Muscle activity was significantly reduced for the Biceps Brachii (49%) and Medial Deltoid (62%) by the device for the 2 kg load. Perceived effort of the arms was significantly lower with the device for the 2 kg load (41%). The device did not have a significant effect on trunk or leg muscle activity (for the 2 kg load) or perceived effort. Local perceived pressure was rated below 2 (low pressure levels) for all contact areas assessed. Half of the participants rated the device usability as acceptable. The exoskeleton reduced muscle activity and perceived effort by the arms, and had no significant negative effect on the trunk and lower body with regards to muscle activity, perceived effort and localised discomfort.


Subject(s)
Arm/physiology , Exoskeleton Device , Muscle, Skeletal/physiology , Physical Exertion , Adult , Deltoid Muscle/physiology , Electromyography , Ergonomics , Female , Humans , Lower Extremity/physiology , Male , Middle Aged , Perception , Pressure
12.
Appl Ergon ; 68: 125-131, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29409626

ABSTRACT

The aim of this study was to evaluate the effect of an industrial exoskeleton on muscle activity, perceived musculoskeletal effort, measured and perceived contact pressure at the trunk, thighs and shoulders, and subjective usability for simple sagittal plane lifting and lowering conditions. Twelve male participants lifted and lowered a box of 7.5 kg and 15 kg, respectively, from mid-shin height to waist height, five times, both with and without the exoskeleton. The device significantly reduced muscle activity of the Erector Spinae (12%-15%) and Biceps Femoris (5%). Ratings of perceived musculoskeletal effort in the trunk region were significantly less with the device (9.5%-11.4%). The measured contact pressure was highest on the trunk (91.7 kPa-93.8 kPa) and least on shoulders (47.6 kPa-51.7 kPa), whereas pressure was perceived highest on the thighs (35-44% of Max LPP). Six of the users rated the device usability as acceptable. The exoskeleton reduced musculoskeletal loading on the lower back and assisted with hip extensor torque during lifting and lowering. Contact pressures fell below the Pain Pressure Threshold. Perceived pressure was not exceptionally high, but sufficiently high to cause discomfort if used for long durations.


Subject(s)
Back Muscles/physiology , Exoskeleton Device , Hamstring Muscles/physiology , Lifting , Task Performance and Analysis , Adult , Biomechanical Phenomena , Healthy Volunteers , Humans , Male , Shoulder/physiology , Torque , Weight-Bearing/physiology
13.
Front Robot AI ; 5: 53, 2018.
Article in English | MEDLINE | ID: mdl-33500935

ABSTRACT

Active exoskeletons are potentially more effective and versatile than passive ones, but designing them poses a number of additional challenges. An important open challenge in the field is associated to the assistive strategy, by which the actuation forces are modulated to the user's needs during the physical activity. This paper addresses this challenge on an active exoskeleton prototype aimed at reducing compressive low-back loads, associated to risk of musculoskeletal injury during manual material handling (i.e., repeatedly lifting objects). An analysis of the biomechanics of the physical task reveals two key factors that determine low-back loads. For each factor, a suitable control strategy for the exoskeleton is implemented. The first strategy is based on user posture and modulates the assistance to support the wearer's own upper body. The second one adapts to the mass of the lifted object and is a practical implementation of electromyographic control. A third strategy is devised as a generalized combination of the first two. With these strategies, the proposed exoskeleton can quickly adjust to different task conditions (which makes it versatile compared to using multiple, task-specific, devices) as well as to individual preference (which promotes user acceptance). Additionally, the presented implementation is potentially applicable to more powerful exoskeletons, capable of generating larger forces. The different strategies are implemented on the exoskeleton and tested on 11 participants in an experiment reproducing the lifting task. The resulting data highlights that the strategies modulate the assistance as intended by design, i.e., they effectively adjust the commanded assistive torque during operation based on user posture and external mass. The experiment also provides evidence of significant reduction in muscular activity at the lumbar spine (around 30%) associated to using the exoskeleton. The reduction is well in line with previous literature and may be associated to lower risk of injury.

14.
Appl Ergon ; 56: 203-12, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27184329

ABSTRACT

In this cross-sectional study associations were examined between eight shift schedule characteristics with shift-specific sleep complaints and need for recovery and generic health and performance measures. It was hypothesized that shift schedule characteristics meeting ergonomic recommendations are associated with better sleep, need for recovery, health and performance. Questionnaire data were collected from 491 shift workers of 18 companies with 9 regular (semi)-continuous shift schedules. The shift schedule characteristics were analyzed separately and combined using multilevel linear regression models. The hypothesis was largely not confirmed. Relatively few associations were found, of which the majority was in the direction as expected. In particular early starts of morning shifts and many consecutive shifts seem to be avoided. The healthy worker effect, limited variation between included schedules and the cross-sectional design might explain the paucity of significant results.


Subject(s)
Fatigue/etiology , Occupational Diseases/etiology , Sleep Wake Disorders/etiology , Sleep , Work Schedule Tolerance/physiology , Adult , Cross-Sectional Studies , Female , Healthy Worker Effect , Humans , Male , Middle Aged , Occupational Health , Rest/physiology , Surveys and Questionnaires , Time Factors
15.
J Electromyogr Kinesiol ; 28: 104-13, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27101392

ABSTRACT

Shoulder disorders comprise a large part of work-related musculoskeletal disorders. Risk factors, such as repetitiveness and monotony, may cause muscle fatigue and be attenuated by task rotation. We investigated rotation between a dynamic box-lifting task and a relatively static pick-and-place task and aimed to determine whether (1) a high rotation frequency leads to less fatigue development than a low rotation frequency, and (2) a self-selected rotation frequency leads to less fatigue development than imposed rotation frequencies. Ten participants performed four one-hour rotation schedules: two low frequency rotation schedules rotating at 30min, one high frequency rotation schedule rotating every sixth minute, and a self-selected rotation schedule. Borg, SOFI and electromyography of Trapezius and Deltoid subparts served as fatigue indicators. We found significant signs of fatigue for most schedules regarding the Borg and SOFI ratings and the M. Trapezius pars Descendens. Task rotation frequency had no significant effect on any of the outcome parameters, whereas the self-selected rotation schedule clearly resulted in less development of perceived fatigue than imposed schedules. In conclusion, we think that freedom of rotation has the greatest potential to attenuate potential development of musculoskeletal disorders and we require due caution with the use and interpretation of EMG indicators of fatigue.


Subject(s)
Muscle Fatigue , Muscle, Skeletal/physiology , Rotation , Adult , Biomechanical Phenomena , Female , Humans , Male , Movement , Shoulder/physiology
16.
Appl Ergon ; 54: 212-7, 2016 May.
Article in English | MEDLINE | ID: mdl-26851481

ABSTRACT

Exoskeletons may form a new strategy to reduce the risk of developing low back pain in stressful jobs. In the present study we examined the potential of a so-called passive exoskeleton on muscle activity, discomfort and endurance time in prolonged forward-bended working postures. Eighteen subjects performed two tasks: a simulated assembly task with the trunk in a forward-bended position and static holding of the same trunk position without further activity. We measured the electromyography for muscles in the back, abdomen and legs. We also measured the perceived local discomfort. In the static holding task we determined the endurance, defined as the time that people could continue without passing a specified discomfort threshold. In the assembly task we found lower muscle activity (by 35-38%) and lower discomfort in the low back when wearing the exoskeleton. Additionally, the hip extensor activity was reduced. The exoskeleton led to more discomfort in the chest region. In the task of static holding, we observed that exoskeleton use led to an increase in endurance time from 3.2 to 9.7 min, on average. The results illustrate the good potential of this passive exoskeleton to reduce the internal muscle forces and (reactive) spinal forces in the lumbar region. However, the adoption of an over-extended knee position might be, among others, one of the concerns when using the exoskeleton.


Subject(s)
Exoskeleton Device , Low Back Pain/prevention & control , Occupational Diseases/prevention & control , Posture/physiology , Work/physiology , Abdominal Muscles/physiology , Adult , Back Muscles/physiology , Electromyography , Female , Healthy Volunteers , Humans , Knee Joint/physiology , Leg/physiology , Low Back Pain/etiology , Low Back Pain/psychology , Lumbosacral Region/physiology , Male , Muscle, Skeletal/physiology , Occupational Diseases/etiology , Occupational Diseases/psychology , Pain Perception , Physical Endurance , Task Performance and Analysis , Thorax/physiology
17.
Exp Brain Res ; 234(2): 419-28, 2016 02.
Article in English | MEDLINE | ID: mdl-26497989

ABSTRACT

We examined the effects of age on automatic and voluntary motor adjustments in pointing tasks. To this end, young (20-25 years) and middle-aged adults (48-62 years) were instructed to point at a target that could unexpectedly change its location (to the left or right) or its color (to green or red) during the movement. In the location change conditions, participants were asked to either adjust their pointing movement toward the new location (i.e., normal pointing) or in the opposite direction (i.e., anti-pointing). In the color change conditions, participants were instructed to adjust their movement to the left or right depending on the change in color. The results showed that in a large proportion of the anti-pointing trials, participants made two adjustments: an early initial automatic adjustment in the direction of the target shift followed by a late voluntary adjustment toward the opposite direction. It was found that the late voluntary adjustments were delayed for the middle-aged participants relative to the young participants. There were no age differences for the fast automatic adjustment in normal pointing, but the early adjustment in anti-pointing tended to be later in the middle-aged adults. Finally, the difference in the onset of early and late adjustments in anti-pointing adjustments was greater among the middle-aged adults. Hence, this study is the first to show that aging slows down voluntary goal-directed movement control processes to greater extent than the automatic stimulus-driven processes.


Subject(s)
Aging/physiology , Movement/physiology , Photic Stimulation/methods , Psychomotor Performance/physiology , Reaction Time/physiology , Adult , Female , Humans , Male , Middle Aged , Young Adult
18.
Ergonomics ; 59(5): 671-81, 2016 May.
Article in English | MEDLINE | ID: mdl-26444053

ABSTRACT

The aim of this review was to provide an overview of assistive exoskeletons that have specifically been developed for industrial purposes and to assess the potential effect of these exoskeletons on reduction of physical loading on the body. The search resulted in 40 papers describing 26 different industrial exoskeletons, of which 19 were active (actuated) and 7 were passive (non-actuated). For 13 exoskeletons, the effect on physical loading has been evaluated, mainly in terms of muscle activity. All passive exoskeletons retrieved were aimed to support the low back. Ten-forty per cent reductions in back muscle activity during dynamic lifting and static holding have been reported. Both lower body, trunk and upper body regions could benefit from active exoskeletons. Muscle activity reductions up to 80% have been reported as an effect of active exoskeletons. Exoskeletons have the potential to considerably reduce the underlying factors associated with work-related musculoskeletal injury. Practitioner Summary: Worldwide, a significant interest in industrial exoskeletons does exist, but a lack of specific safety standards and several technical issues hinder mainstay practical use of exoskeletons in industry. Specific issues include discomfort (for passive and active exoskeletons), weight of device, alignment with human anatomy and kinematics, and detection of human intention to enable smooth movement (for active exoskeletons).


Subject(s)
Back Muscles , Exoskeleton Device , Industry , Movement , Weight-Bearing , Workload , Biomechanical Phenomena , Humans , Man-Machine Systems
19.
Ergonomics ; 59(2): 310-24, 2016.
Article in English | MEDLINE | ID: mdl-26241633

ABSTRACT

This study examined associations of chronotype and age with shift-specific assessments of main sleep duration, sleep quality and need for recovery in a cross-sectional study among N = 261 industrial shift workers (96.6% male). Logistic regression analyses were used, adjusted for gender, lifestyle, health, nap behaviour, season of assessment and shift schedule. Shift workers with latest versus earliest chronotype reported a shorter sleep duration (OR 11.68, 95% CI 3.31-41.17) and more awakenings complaints (OR 4.84, 95% CI 4.45-11.92) during morning shift periods. No associations were found between chronotype, sleep and need for recovery during evening and night shift periods. For age, no associations were found with any of the shift-specific outcome measures. The results stress the importance of including the concept of chronotype in shift work research and scheduling beyond the concept of age. Longitudinal research using shift-specific assessments of sleep and need for recovery are needed to confirm these results. PRACTITIONER SUMMARY: Chronotype seems to better explain individual differences in sleep than age. In view of ageing societies, it might therefore be worthwhile to further examine the application of chronotype for individualised shift work schedules to facilitate healthy and sustainable employment.


Subject(s)
Age Factors , Circadian Clocks/physiology , Recovery of Function/physiology , Sleep/physiology , Work Schedule Tolerance/physiology , Adult , Cross-Sectional Studies , Female , Humans , Industry , Male , Middle Aged , Occupational Diseases/etiology , Occupational Diseases/physiopathology , Sleep Disorders, Circadian Rhythm/etiology , Sleep Disorders, Circadian Rhythm/physiopathology , Time Factors , Wakefulness
20.
Ergonomics ; 58(12): 1927-38, 2015.
Article in English | MEDLINE | ID: mdl-26074172

ABSTRACT

The objectives of this study were to (1) examine whether need for recovery differs between workers (i) not on-call, (ii) on-call but not called and (iii) on-call and called, and (2) investigate the associations between age, health, work and social characteristics with need for recovery for the three scenarios (i-iii). Cross-sectional data of N = 169 Dutch distal on-call workers were analysed with multivariate logistic regression. Need for recovery differed significantly between the three scenarios (i-iii), with lowest need for recovery for scenario (i) 'not on-call' and highest need for recovery for scenario (iii) 'on-call and called'. Poor mental health and high work-family interference were associated with higher need for recovery in all three scenarios (i-iii), whereas high work demands was only associated with being on-call (ii and iii). The results suggest that the mere possibility of being called affects the need for recovery, especially in workers reporting poor mental health, high-work demands and work-family interference. Practitioner summary: On-call work is a scarcely studied but demanding working time arrangement. We examined need for recovery and its associations with age, health, work and social characteristics among distal on-call workers. The results suggest that the mere possibility of being called can affect worker well-being and need for recovery.


Subject(s)
Needs Assessment , Sleep , Work Schedule Tolerance , Work-Life Balance , Workload , Adult , Cross-Sectional Studies , Humans , Logistic Models , Male , Mental Health , Middle Aged , Multivariate Analysis , Odds Ratio , Personnel Staffing and Scheduling
SELECTION OF CITATIONS
SEARCH DETAIL
...