Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38668821

ABSTRACT

Curdlan, a ß-1,3/1,6-glucan found in Alcaligenes faecalis (A. faecalis) wall, activates innate and humoral immunity. The aim of this study is to evaluate whether pretreated rats with A. faecalis A12C could prevent sepsis disturbances and identify the immunomodulatory mechanisms involved. Experiments occurred in two stages: a survival study with 16 rats randomly divided into septic (SC) (n = 8) and septic pretreated (SA) (n = 8) groups and 45 rats divided into four groups: healthy (AGUSAN) (n = 9), septic (AGUIC) (n = 13), septic pretreated (AGUIA) (n = 14), and healthy pretreated (AGUSTO) (n = 9). Sepsis was induced by cecal ligation and puncture after 30 days of A. faecalis A12C pretreatment or without. SA group had a higher survival rate of 58% vs. 16% for SC group (P < 0.05). Overall, AGUIA showed better status than AGUIC (P < 0.01). Higher monocytosis was found in AGUIA and AGUSTO vs. AGUIC and AGUSAN, respectively (P < 0.05). A gradual increase in curdlan fecal concentration was observed in AGUIA during pretreatment. Fecal concentrations of Escherichia coli significantly decreased in AGUIA and AGUSTO. Bacterial load in urine, peritoneal lavage fluid (PLF), and bronchoalveolar lavage fluid (BALF) decreased (P < 0.05) in AGUIA vs. AGUIC. Finally, lower inflammation was observed in serum, BALF, and PLF, with reduced IL-6, IL-10, IL-1ß, and TNF-α, along with less damage in lungs and peritoneum in AGUIA vs. AGUIC. These findings suggest the connection between curdlan-produced by A. faecalis A12C-with the immune system and the reduction in severity of experimental sepsis.

2.
Probiotics Antimicrob Proteins ; 13(5): 1326-1337, 2021 10.
Article in English | MEDLINE | ID: mdl-33713309

ABSTRACT

A strain of Alcaligenes faecalis A12C (A. faecalis A12C) isolated from Argyrosomus regius is a probiotic in fish. Previous experiments showed that A. faecalis A12C had inhibitory effects on the growth of multidrug-resistant bacteria. We aimed to confirm whether A. faecalis A12C is safe and has adequate intestinal colonization in experimental rats, and evaluate its efficacy in an animal model of peritonitis. We used 30 male rats, randomly divided into 6 groups (n = 5): three groups (HA7, HA15, HA30) received A. faecalis A12C in drinking water (6 × 108 CFU/mL) for 7 days, and three control groups received drinking water only. All groups were evaluated at 7, 15, and 30 days. Survival after A. faecalis A12C administration was 100% in all groups. Mild eosinophilia (1.5%, p < 0.01) and increased aspartate aminotransferase (86 IU/L, p < 0.05) were observed in HA7, followed by progressive normalization. No histological signs of organ injury were found. We observed significant E. coli decline in faeces, parallel to an increase in A. faecalis A12C at 7 days. E. coli had a tendency to recover initial values, while A. faecalis A12C disappeared from the intestinal microbiota at 30 days. To evaluate its efficacy against peritonitis, we studied two additional groups of animals: IA group pretreated with A. faecalis A12C before E. coli intra-abdominal inoculation, and IC group inoculated with no A. faecalis A12C. We found an increase in C-reactive protein, alanine aminotransferase, urea, and eosinophils in IC animals when compared with IA. Peritonitis was more evident in IC than in IA animals. Our findings suggest that A. faecalis A12C altered clinically relevant parameters in sepsis and was associated with a lesser spread of infection.


Subject(s)
Alcaligenes faecalis , Peritonitis , Probiotics , Animals , Drinking Water , Escherichia coli/pathogenicity , Male , Peritonitis/therapy , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...