Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Phytopathology ; 98(8): 894-900, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18943207

ABSTRACT

Downy mildew is a destructive disease of spinach worldwide. There have been 10 races described since 1824, six of which have been identified in the past 10 years. Race identification is based on qualitative disease reactions on a set of diverse host differentials which include open-pollinated cultivars, contemporary hybrid cultivars, and older hybrid cultivars that are no longer produced. The development of a set of near-isogenic open-pollinated spinach lines (NILs), having different resistance loci in a susceptible and otherwise common genetic background, would facilitate identification of races of the downy mildew pathogen, provide a tool to better understand the genetics of resistance, and expedite the development of molecular markers linked to these disease resistance loci. To achieve this objective, the spinach cv. Viroflay, susceptible to race 6 of Peronospora farinosa f. sp. spinaciae, was used as the recurrent susceptible parent in crosses with the hybrid spinach cv. Lion, resistant to race 6. Resistant F(1) progeny were subsequently backcrossed to Viroflay four times with selection for race 6 resistance each time. Analysis of the segregation data showed that resistance was controlled by a single dominant gene, and the resistance locus was designated Pfs-1. By bulk segregant analysis, an amplified fragment length polymorphism (AFLP) marker (E-ACT/M-CTG) linked to Pfs-1 was identified and used to develop a co-dominant Sequence characterized amplified region (SCAR) marker. This SCAR marker, designated Dm-1, was closely linked ( approximately 1.7 cM) to the Pfs-1 locus and could discriminate among spinach genotypes that were homozygous resistant (Pfs-1Pfs-1), heterozygous resistant (Pfs-1pfs-1), or homozygous susceptible (pfs-1pfs-1) to race 6 within the original mapping population. Evaluation of a wide range of commercial spinach lines outside of the mapping population indicated that Dm-1 could effectively identify Pfs-1 resistant genotypes; the Dm-1 marker correctly predicted the disease resistance phenotype in 120 out of 123 lines tested. In addition, the NIL containing the Pfs-1 locus (Pfs-1Pfs-1) was resistant to multiple races of the downy mildew pathogen indicating Pfs-1 locus may contain a cluster of resistance genes.


Subject(s)
Genetic Markers/genetics , Peronospora/physiology , Plant Diseases/genetics , Spinacia oleracea/genetics , Spinacia oleracea/microbiology , Amplified Fragment Length Polymorphism Analysis , Gene Expression Regulation, Plant , Genes, Plant , Plant Diseases/microbiology
2.
Mol Genet Genomics ; 269(5): 692-8, 2003 Aug.
Article in English | MEDLINE | ID: mdl-12836014

ABSTRACT

Significant differences in seedling vigor exist among sugar beet (Beta vulgaris) hybrids; however, traditional approaches to breeding enhanced vigor have not proven effective. Seedling vigor is a complex character, but presumably includes efficient mobilization of seed storage reserves during germination and efficient seedling growth in diverse environments. The involvement of lipid metabolism during germination of sugar beet under stress conditions was suggested by the isolation at high frequency of Expressed Sequence Tags (ESTs) with similarity to isocitrate lyase (EC 4.1.3.1). High-level expression of this glyoxylate cycle enzyme during germination and seedling emergence was also suggested by nucleotide sequencing of cDNA libraries obtained from a well emerging sugar beet hybrid during germination under stress. Genes involved in carbohydrate and lipid catabolism were differentially expressed in a strongly emerging hybrid, relative to a weakly emerging hybrid, during stress germination. Stress markedly reduced the levels of alpha-amylase transcripts in the weakly emerging hybrid. In contrast, the strongly emerging hybrid exhibited only a moderate reduction in alpha-amylase transcript levels under the same conditions, and showed large increases in the expression of genes involved in lipid metabolism, suggesting compensation by lipid for carbohydrate metabolism in the better emerging hybrid. Differential activity of the glyoxylate cycle thus appears to be a physiological marker that distinguishes between high- and low-vigor sugar beet cultivars. This finding suggests, for the first time, a biochemical target for selection for enhanced germination and improved emergence in sugar beet.


Subject(s)
Genes, Plant , Glyoxylates/metabolism , Seedlings/genetics , Beta vulgaris , Enzyme Induction , Expressed Sequence Tags , Gene Expression Profiling , Germination , Isocitrate Lyase/genetics
3.
Theor Appl Genet ; 107(6): 1071-82, 2003 Oct.
Article in English | MEDLINE | ID: mdl-12827255

ABSTRACT

Rice (Oryza sativa L.) is sensitive to chilling particularly during early seedling development. Given the biochemical complexity of tolerance mechanisms, genetic potential for this trait depends on highly coordinated expression of many genes. We used a simple cDNA subtraction strategy to develop Expressed Sequence Tags (ESTs) that represent an important subset of cold stress-upregulated genes. The 3,084 subtracted cDNA clones represent a total of 1,967 unigenes from 1,354 singletons and 613 contigs. As expected in the developing seedlings, genes involved in basic cellular processes, i.e., metabolism, growth and development, protein synthesis, folding and destination, cellular transport, cell division and DNA replication were widely represented. Genes with stress-related and regulatory functions comprised 23.17% of the total ESTs. These categories included proteins with known function in cellular defenses against abiotic (drought, cold and salinity) and biotic (pathogen) stresses, and proteins involved in developmental and stress response signalling and transcription. Based on the types of genes represented, tolerance mechanisms rely on precise integration of developmental processes with stress-related responses. A large fraction of the ESTs (38.7%) represents unknown proteins. This EST library is a rich source of cold stress-related genes, and supplements for other publicly available libraries for comprehensive analysis of the stress-response transcriptome.


Subject(s)
Cold Temperature , Expressed Sequence Tags , Gene Library , Oryza/genetics , Seedlings/physiology , Genome, Plant , Molecular Sequence Data , Oryza/physiology , Transcription, Genetic
4.
Genome ; 42(3): 465-74, 1999 Jun.
Article in English | MEDLINE | ID: mdl-10382294

ABSTRACT

The genus Cynodon (Gramineae), comprised of 9 species, is geographically widely distributed and genetically diverse. Information on the amounts of molecular genetic variation among and within Cynodon taxa is needed to enhance understanding of phylogenetic relations and facilitate germplasm management and breeding improvement efforts. Genetic relatedness among 62 Cynodon accessions, representing eight species, was assessed using DNA amplification fingerprinting (DAF). Ten 8-mer oligonucleotides were used to amplify specific Cynodon genomic sequences. The DNA amplification products of individual accessions were scored for presence (1) or absence (0) of bands. Similarity matrices were developed and the accessions were grouped by cluster (UPGMA) and principal coordinate analysis. Analyses were conducted within ploidy level (2x = 18 and 4x = 36) and over ploidy levels. Each primer revealed polymorphic loci among accessions within species. Of 539 loci (bands) scored, 496 (92%) were polymorphic. Cynodon arcuatus was clearly separated from other species by numerous monomorphic bands. The strongest species similarities were between C. aethiopicus and C. arcuatus, C. transvaalensis and C. plectostachyus, and C. incompletus and C. nlemfuensis. Intraspecific variation was least for C. aethiopicus, C. arcuatus, and C. transvaalensis, and greatest for C. dactylon. Accessions of like taxonomic classification were generally clustered, except the cosmopolitan C. dactylon var. dactylon and C. dactylon var. afganicus. Within taxa, accessions differing in chromosome number clustered in all instances indicating the 2x and 4x forms to be closely related. Little, if any, relationship was found between relatedness as indicated by the DAF profiles and previous estimates of hybridization potential between the different taxa.


Subject(s)
Genetic Variation , Phylogeny , Plants/classification , Plants/genetics , Base Sequence , DNA Fingerprinting/methods , DNA, Plant/genetics , DNA, Plant/isolation & purification , Nucleic Acid Amplification Techniques , Plant Leaves , Polymerase Chain Reaction , Polymorphism, Genetic
5.
Theor Appl Genet ; 88(1): 102-9, 1994 Apr.
Article in English | MEDLINE | ID: mdl-24185889

ABSTRACT

Oryza australiensis, a diploid wild relative of cultivated rice, is an important source of resistance to brown planthopper (BPH) and bacterial blight (BB). Interspecific hybrids between three breeding lines of O. sativa (2n=24, AA) and four accessions of O. australiensis (2n=24, EE) were obtained through embryo rescue. The crossability ranged from 0.25% to 0.90%. The mean frequency of bivalents at diakinesis/metaphase I in F1 hybrids (AE) was 2.29 to 4.85 with a range of 0-8 bivalents. F1 hybrids were completely male sterile. We did not obtain any BC1 progenies even after pollinating 20,234 spikelets of AE hybrids with O. sativa pollen. We crossed the artificially induced autotetraploid of an elite breeding line (IR31917-45-3-2) with O. australiensis (Acc. 100882) and, following embryo rescue, produced six F1 hybrid plants (AAE). These triploid hybrids were backcrossed to O. sativa. The chromosome number of 16 BC1 plants varied from 28 to 31, and all were male sterile. BC2 plants had 24-28 chromosomes. Eight monosomic alien addition lines (MAALs) having a 2n chromosome complement of O. sativa and one chromosome of O. australiensis were selected from the BC2 F2 progenies. The MAALs resembled the primary trisomies of O. sativa in morphology, and on the basis of this morphological similarity the MAALs were designated as MAAL-1, -4, -5, -7, -9, -10, -11, and -12. The identity of the alien chromosome was verified at the pachytene stage of meiosis. The alien chromosomes paired with the homoeologous pairs to form trivalents at a frequency of 13.2% to 24.0% at diakinesis and 7.5% to 18.5% at metaphase I. The female transmission rates of alien chromosomes varied from 4.2% to 37.2%, whereas three of the eight MAALs transmitted the alien chromosome through the male gametes. BC2 progenies consisting of disomic and aneuploid plants were examined for the presence of O. australiensis traits. Alien introgression was detected for morphological traits, such as long awns, earliness, and Amp-3 and Est-2 allozymes. Of the 600 BC2 F4 progenies 4 were resistant to BPH and 1 to race 6 of BB. F3 segregation data suggest that earliness is a recessive trait and that BPH resistance is monogenic recessive in two of the four lines but controlled by a dominant gene in the other two lines.

SELECTION OF CITATIONS
SEARCH DETAIL
...