Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Enzyme Microb Technol ; 175: 110409, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38335559

ABSTRACT

The solvent-free esterification of the free fatty acids (FFAs) obtained by the hydrolysis of castor oil (a non-edible vegetable oil) with 2-ethyl-1-hexanol (a branched fatty alcohol) was catalyzed by different free lipases. Eversa Transform 2.0 (ETL) features surpassed most commercial lipases. Some process parameters were optimized by the Taguchi method (L16'). As a result, a conversion over 95% of the FFAs of castor oil into esters with lubricants properties was achieved under optimized reaction conditions (15 wt% of biocatalyst content, 1:4 molar ratio (FFAs/alcohol), 30 °C, 180 rpm, 96 h). The substrates molar ratio had the highest influence on the dependent variable (conversion at 24 h). FFAs/2-ethyl-1-hexanol esters were characterized regarding the physicochemical and tribological properties. Interestingly, the modification of the FFAs with 2-ethyl-1-hexanol by ETL increased the oxidative stability of the FFAs feedstock from 0.18 h to 16.83 h. The biolubricants presented a lower friction coefficient than the reference commercial mineral lubricant (0.052 ± 0.07 against 0.078 ± 0.04). Under these conditions, ETL catalyzed the oligomerization of ricinoleic acid (a hydroxyl fatty acid) into estolides, reaching a conversion of 25.15% of the initial FFAs (for the first time).


Subject(s)
Castor Oil , Fatty Acids, Nonesterified , Hexanols , Esterification , Esters/chemistry , Fatty Acids/chemistry , Lipase/metabolism , Ethanol , Catalysis , Enzymes, Immobilized/chemistry
2.
Biotechnol Adv ; 61: 108045, 2022 12.
Article in English | MEDLINE | ID: mdl-36181965

ABSTRACT

This review summarizes the most relevant advances in the biological transformation of fatty acids (or derivatives) into hydrocarbons to be used as biofuels (biogasoline, green diesel and jet biofuel). Among the used enzymes, the fatty acid decarboxylase from Jeotgalicoccus sp. ATCC 8456 (OleTJE) stands out as a promising enzyme. OleTJE may be coupled in cascade reactions with metalloenzymes or reductases from the Old Yellow Enzymes (OYE) family to perform the hydrogenation of α-olefins into paraffins. The photodecarboxylase from Chlorella variabilis NC64A (CvFAP) is an example of coupling biocatalysis and photocatalysis to produce alkanes. Besides the (photo)decarboxylation of free fatty acids and/or triacyclglycerols to produce alkanes/alkenes, by enzymes has also been employed. The cyanobacterial aldehyde decarbonylase (cAD) from Nostoc punctiforme is an outstanding example of this kind of enzymes used to produce alkanes. Overall, these kinds of enzymes open up new possibilities to the production of biofuels from renewable sources, even if they have many limitations on the current situation. The possibilities of improving enzymes features via immobilization or coimmobilization, as well as the utilization of whole cells haves been also reviewed.


Subject(s)
Alkanes , Chlorella , Alkenes , Biofuels , Triglycerides , Fatty Acids
SELECTION OF CITATIONS
SEARCH DETAIL
...