Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Aging Cell ; : e14245, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38932463

ABSTRACT

Alterations in the rate and accuracy of messenger RNA (mRNA) translation are associated with aging and several neurodegenerative disorders, including Alzheimer's disease and related tauopathies. We previously reported that error-containing RNA that are normally cleared via nonsense-mediated mRNA decay (NMD), a key RNA surveillance mechanism, are translated in the adult brain of a Drosophila model of tauopathy. In the current study, we find that newly-synthesized peptides and translation machinery accumulate within nuclear envelope invaginations that occur as a consequence of tau pathology, and that the rate of mRNA translation is globally elevated in early stages of disease in adult brains of Drosophila models of tauopathy. Polysome profiling from adult heads of tau transgenic Drosophila reveals the preferential translation of specific mRNA that have been previously linked to neurodegeneration. Unexpectedly, we find that panneuronal elevation of NMD further elevates the global translation rate in tau transgenic Drosophila, as does treatment with rapamycin. As NMD activation and rapamycin both suppress tau-induced neurodegeneration, their shared effect on translation suggests that elevated rates of mRNA translation are an early adaptive mechanism to limit neurodegeneration. Our work provides compelling evidence that tau-induced deficits in NMD reshape the tau translatome by increasing translation of RNA that are normally repressed in healthy cells.

2.
bioRxiv ; 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38328044

ABSTRACT

Circular RNAs (circRNAs), covalently closed RNA molecules that form due to back-splicing of RNA transcripts, have recently been implicated in Alzheimer's disease and related tauopathies. circRNAs are regulated by N6-methyladenosine (m6A) RNA methylation, can serve as "sponges" for proteins and RNAs, and can be translated into protein via a cap-independent mechanism. Mechanisms underlying circRNA dysregulation in tauopathies and causal relationships between circRNA and neurodegeneration are currently unknown. In the current study, we aimed to determine whether pathogenic forms of tau drive circRNA dysregulation and whether such dysregulation causally mediates neurodegeneration. We identify circRNAs that are differentially expressed in the brain of a Drosophila model of tauopathy and in induced pluripotent stem cell (iPSC)-derived neurons carrying a tau mutation associated with autosomal dominant tauopathy. We leverage Drosophila to discover that depletion of circular forms of muscleblind (circMbl), a circRNA that is particularly abundant in brains of tau transgenic Drosophila, significantly suppresses tau neurotoxicity, suggesting that tau-induced circMbl elevation is neurotoxic. We detect a general elevation of m6A RNA methylation and circRNA methylation in tau transgenic Drosophila and find that tau-induced m6A methylation is a mechanistic driver of circMbl formation. Interestingly, we find that circRNA and m6A RNA accumulate within nuclear envelope invaginations of tau transgenic Drosophila and in iPSC-derived cerebral organoid models of tauopathy. Taken together, our studies add critical new insight into the mechanisms underlying circRNA dysregulation in tauopathy and identify m6A-modified circRNA as a causal factor contributing to neurodegeneration. These findings add to a growing literature implicating pathogenic forms of tau as drivers of altered RNA metabolism.

3.
iScience ; 26(3): 106152, 2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36879821

ABSTRACT

In Alzheimer's disease, neurons acquire phenotypes that are also present in various cancers, including aberrant activation of the cell cycle. Unlike cancer, cell cycle activation in post-mitotic neurons is sufficient to induce cell death. Multiple lines of evidence suggest that abortive cell cycle activation is a consequence of pathogenic forms of tau, a protein that drives neurodegeneration in Alzheimer's disease and related "tauopathies." Here we combine network analyses of human Alzheimer's disease and mouse models of Alzheimer's disease and primary tauopathy with studies in Drosophila to discover that pathogenic forms of tau drive cell cycle activation by disrupting a cellular program involved in cancer and the epithelial-mesenchymal transition (EMT). Moesin, an EMT driver, is elevated in cells harboring disease-associated phosphotau, over-stabilized actin, and ectopic cell cycle activation. We further find that genetic manipulation of Moesin mediates tau-induced neurodegeneration. Taken together, our study identifies novel parallels between tauopathy and cancer.

4.
Sci Adv ; 9(1): eabq5423, 2023 01 06.
Article in English | MEDLINE | ID: mdl-36608133

ABSTRACT

Deposition of tau protein aggregates in the brain of affected individuals is a defining feature of "tauopathies," including Alzheimer's disease. Studies of human brain tissue and various model systems of tauopathy report that toxic forms of tau negatively affect nuclear and genomic architecture, identifying pathogenic tau-induced heterochromatin decondensation and consequent retrotransposon activation as a causal mediator of neurodegeneration. On the basis of their similarity to retroviruses, retrotransposons drive neuroinflammation via toxic intermediates, including double-stranded RNA (dsRNA). We find that dsRNA and dsRNA sensing machinery are elevated in astrocytes of postmortem brain tissue from patients with Alzheimer's disease and progressive supranuclear palsy and in brains of tau transgenic mice. Using a Drosophila model of tauopathy, we identify specific tau-induced retrotransposons that form dsRNA and find that pathogenic tau and heterochromatin decondensation causally drive dsRNA-mediated neurodegeneration and neuroinflammation. Our study suggests that pathogenic tau-induced heterochromatin decondensation and retrotransposon activation cause elevation of inflammatory, transposable element-derived dsRNA in the adult brain.


Subject(s)
Alzheimer Disease , Tauopathies , Animals , Mice , Adult , Humans , Alzheimer Disease/metabolism , DNA Transposable Elements , Retroelements/genetics , RNA, Double-Stranded/metabolism , Neuroinflammatory Diseases , Heterochromatin/metabolism , tau Proteins/genetics , tau Proteins/metabolism , Tauopathies/genetics , Tauopathies/metabolism , Brain/metabolism , Mice, Transgenic , Drosophila/genetics
5.
Alzheimers Dement ; 19(2): 405-420, 2023 02.
Article in English | MEDLINE | ID: mdl-35416419

ABSTRACT

INTRODUCTION: While brains of patients with Alzheimer's disease and related tauopathies have evidence of altered RNA processing, we lack a mechanistic understanding of how altered RNA processing arises in these disorders and if such changes are causally linked to neurodegeneration. METHODS: Using Drosophila melanogaster models of tauopathy, we find that overall activity of nonsense-mediated mRNA decay (NMD), a key RNA quality-control mechanism, is reduced. Genetic manipulation of NMD machinery significantly modifies tau-induced neurotoxicity, suggesting that deficits in NMD are causally linked to neurodegeneration. Mechanistically, we find that deficits in NMD are a consequence of aberrant RNA export and RNA accumulation within nuclear envelope invaginations in tauopathy. We identify a pharmacological activator of NMD that suppresses neurodegeneration in tau transgenic Drosophila, indicating that tau-induced deficits in RNA quality control are druggable. DISCUSSION: Our studies suggest that NMD activators should be explored for their potential therapeutic value to patients with tauopathies.


Subject(s)
Nonsense Mediated mRNA Decay , Tauopathies , Animals , Drosophila melanogaster/genetics , Drosophila/genetics , Tauopathies/genetics , RNA
6.
Biochem Biophys Res Commun ; 605: 70-81, 2022 05 21.
Article in English | MEDLINE | ID: mdl-35316766

ABSTRACT

The central nervous system (CNS) is endowed with a specialized cerebrospinal fluid (CSF)/lymph network which removes toxic molecules and metabolic by-products from the neural parenchyma; collectively, this has been named the glymphatic system. It allows CSF located in the subarachnoid space which surrounds the CNS to enter the depths of the brain and spinal cord by means of Virchow-Robin perivascular and perivenous spaces. CSF in the periarterial spaces is transferred across the astrocytic end feet which line these spaces aided by AQ4 channels; in the interstitium, the fluid moves via convection through the parenchyma to be eventually discharged into the perivenous spaces. As it passes through the neural tissue, the interstitial fluid flushes metabolic by-products and extracellular toxins and debris into the CSF of the perivenous spaces. The fluid then moves to the surface of the CNS where the contaminants are absorbed into true lymphatic vessels in the dura mater from where it is shunted out of the cranial vault to the cervical lymph nodes. Pineal melatonin released directly into the CSF causes the concentration of this molecule to be much higher in the CSF of the third ventricle than in the blood. After the ventricular melatonin enters the subarachnoid and Virchow-Robin spaces it is taken into the neural tissue where it functions as a potent antioxidant and anti-inflammatory agent. Experimental evidence indicates that it removes pathogenic toxins, e.g., amyloid-ß and others, from the brain to protect against neurocognitive decline. Melatonin levels drop markedly during aging, coincident with the development of several neurodegenerative diseases and the accumulation of the associated neurotoxins.


Subject(s)
Melatonin , Brain/physiology , Cerebrospinal Fluid/metabolism , Melatonin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...