Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 377(6614): eabo7257, 2022 09 30.
Article in English | MEDLINE | ID: mdl-36007006

ABSTRACT

The granular dorsolateral prefrontal cortex (dlPFC) is an evolutionary specialization of primates that is centrally involved in cognition. We assessed more than 600,000 single-nucleus transcriptomes from adult human, chimpanzee, macaque, and marmoset dlPFC. Although most cell subtypes defined transcriptomically are conserved, we detected several that exist only in a subset of species as well as substantial species-specific molecular differences across homologous neuronal, glial, and non-neural subtypes. The latter are exemplified by human-specific switching between expression of the neuropeptide somatostatin and tyrosine hydroxylase, the rate-limiting enzyme in dopamine production in certain interneurons. The above molecular differences are also illustrated by expression of the neuropsychiatric risk gene FOXP2, which is human-specific in microglia and primate-specific in layer 4 granular neurons. We generated a comprehensive survey of the dlPFC cellular repertoire and its shared and divergent features in anthropoid primates.


Subject(s)
Dorsolateral Prefrontal Cortex , Evolution, Molecular , Primates , Somatostatin , Tyrosine 3-Monooxygenase , Adult , Animals , Dopamine/metabolism , Dorsolateral Prefrontal Cortex/cytology , Dorsolateral Prefrontal Cortex/metabolism , Humans , Pan troglodytes , Primates/genetics , Single-Cell Analysis , Somatostatin/genetics , Somatostatin/metabolism , Transcriptome , Tyrosine 3-Monooxygenase/genetics , Tyrosine 3-Monooxygenase/metabolism
2.
Int J Mol Sci ; 22(17)2021 Aug 24.
Article in English | MEDLINE | ID: mdl-34502060

ABSTRACT

The transcriptome of every cell is orchestrated by the complex network of interaction between transcription factors (TFs) and their binding sites on DNA. Disruption of this network can result in many forms of organism malfunction but also can be the substrate of positive natural selection. However, understanding the specific determinants of each of these individual TF-DNA interactions is a challenging task as it requires integrating the multiple possible mechanisms by which a given TF ends up interacting with a specific genomic region. These mechanisms include DNA motif preferences, which can be determined by nucleotide sequence but also by DNA's shape; post-translational modifications of the TF, such as phosphorylation; and dimerization partners and co-factors, which can mediate multiple forms of direct or indirect cooperative binding. Binding can also be affected by epigenetic modifications of putative target regions, including DNA methylation and nucleosome occupancy. In this review, we describe how all these mechanisms have a role and crosstalk in one specific family of TFs, the basic helix-loop-helix (bHLH), with a very conserved DNA binding domain and a similar DNA preferred motif, the E-box. Here, we compile and discuss a rich catalog of strategies used by bHLH to acquire TF-specific genome-wide landscapes of binding sites.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Animals , Basic Helix-Loop-Helix Transcription Factors/chemistry , Basic Helix-Loop-Helix Transcription Factors/genetics , Chromatin/chemistry , Chromatin/genetics , Chromatin/metabolism , DNA/chemistry , DNA/genetics , DNA/metabolism , Humans , Protein Binding , Transcriptional Activation
SELECTION OF CITATIONS
SEARCH DETAIL
...