Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Oncotarget ; 13: 490-504, 2022.
Article in English | MEDLINE | ID: mdl-35251496

ABSTRACT

Multiple myeloma (MM) is a hematological malignancy of plasma cells that remains incurable despite significant progress with myeloablative regimens and autologous stem cell transplantation for eligible patients and, more recently with T cell redirected immunotherapy. Recently, we reported that ex vivo virotherapy with oncolytic myxoma virus (MYXV) improved MM-free survival in an autologous-transplant Balb/c mouse model. Here, we tested the Vk*MYC transplantable C57BL/6 mouse MM model that more closely recapitulates human disease. In vitro, the murine bortezomib-resistant Vk12598 cell line is fully susceptible to MYXV infection. In vivo results demonstrate: (i) autologous bone marrow (BM) leukocytes armed ex vivo with MYXV exhibit moderate therapeutic effects against MM cells pre-seeded into recipient mice; (ii) Cyclophosphamide in combination with BM/MYXV delays the onset of myeloma in mice seeded with Vk12598 cells; (iii) BM/MYXV synergizes with the Smac-mimetics LCL161 and with immune checkpoint inhibitor α-PD-1 to control the progression of established MM in vivo, resulting in significant improvement of survival rates and decreased of tumor burden; (iv) Survivor mice from (ii) and (iii), when re-challenged with fresh Vk12598 cells, developed acquired anti-MM immunity. These results highlight the utility of autologous BM grafts armed ex vivo with oncolytic MYXV alone or in combination with chemotherapy/immunotherapy to treat drug-resistant MM in vivo.


Subject(s)
Hematopoietic Stem Cell Transplantation , Multiple Myeloma , Myxoma virus , Oncolytic Virotherapy , Oncolytic Viruses , Animals , Bone Marrow , Bortezomib/pharmacology , Cyclophosphamide , Hematopoietic Stem Cell Transplantation/methods , Humans , Immune Checkpoint Inhibitors , Mice , Mice, Inbred C57BL , Multiple Myeloma/therapy , Oncolytic Virotherapy/methods , Programmed Cell Death 1 Receptor , Transplantation, Autologous
2.
Mol Ther Oncolytics ; 22: 539-554, 2021 Sep 24.
Article in English | MEDLINE | ID: mdl-34553039

ABSTRACT

Solid cancers that metastasize to the lungs represent a major therapeutic challenge. Current treatment paradigms for lung metastases consist of radiation therapy, chemotherapies, and surgical resection, but there is no single treatment or combination that is effective for all tumor types. To address this, oncolytic myxoma virus (MYXV) engineered to express human tumor necrosis factor (vMyx-hTNF) was tested after systemic administration in an immunocompetent mouse K7M2-Luc lung metastatic osteosarcoma model. Virus therapy efficacy against pre-seeded lung metastases was assessed after systemic infusion of either naked virus or ex vivo-loaded autologous bone marrow leukocytes or peripheral blood mononuclear cells (PBMCs). Results of this study showed that the PBMC pre-loaded strategy was the most effective at reducing tumor burden and increasing median survival time, but sequential intravenous multi-dosing with naked virus was comparably effective to a single infusion of PBMC-loaded virus. PBMC-loaded vMyx-hTNF also potentially synergized very effectively with immune checkpoint inhibitors anti-PD-1, anti-PD-L1, and anti-cytotoxic T lymphocyte associated protein 4 (CTLA-4). Finally, in addition to the pro-immune stimulation caused by unarmed MYXV, the TNF transgene of vMyx-hTNF further induced the unique expression of numerous additional cytokines associated with the innate and adaptive immune responses in this model. We conclude that systemic ex vivo virotherapy with TNF-α-armed MYXV represents a new potential strategy against lung metastatic cancers like osteosarcoma and can potentially act synergistically with established checkpoint immunotherapies.

3.
Methods Mol Biol ; 2225: 63-75, 2021.
Article in English | MEDLINE | ID: mdl-33108657

ABSTRACT

Myxoma virus (MYXV) has proven to be an effective candidate for oncolytic virotherapy in many preclinical cancer models. As a nonhuman pathogen, MYXV does not need to overcome any preexisting antiviral immunity, and its DNA cannot integrate into the host genome, making it an extremely safe vector. Moreover, the large dsDNA genome of MYXV allows the insertion of multiple transgenes and the design of engineered recombinant oncolytic viruses (OVs) with enhanced immunostimulatory or other desired properties. In this chapter, we describe detailed protocols for the generation and characterization of transgene-armed recombinant MYXV vectors.


Subject(s)
Genetic Engineering/methods , Genome, Viral , Myxoma virus/genetics , Oncolytic Virotherapy/methods , Oncolytic Viruses/genetics , Animals , Chlorocebus aethiops , Cloning, Molecular/methods , Genes, Reporter , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HeLa Cells , Humans , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Myxoma virus/metabolism , Oncolytic Viruses/metabolism , Plasmids/chemistry , Plasmids/metabolism , Rabbits , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Transgenes , Vero Cells
4.
Methods Mol Biol ; 2225: 163-177, 2021.
Article in English | MEDLINE | ID: mdl-33108662

ABSTRACT

Viruses engineered to express fluorescent proteins can be used with live-cell imaging techniques to monitor the progression of infection in real time. Here we describe a set of methods to track infection spreading from one cell population to another as well as to visualize transfer of virions between cells. This approach is extended to multiplexing with physiological readouts of cell death, which can be correlated with single-cell resolution to viral infection.


Subject(s)
Cell Tracking/methods , Genetic Engineering/methods , Myxoma virus/genetics , Optical Imaging/methods , Viral Proteins/genetics , Virion/genetics , A549 Cells , Apoptosis/genetics , Gene Expression , Genes, Reporter , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , Jurkat Cells , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Myxoma virus/growth & development , Myxoma virus/metabolism , Optical Imaging/statistics & numerical data , Viral Proteins/metabolism , Virion/growth & development , Virion/metabolism , Virus Replication/genetics , Red Fluorescent Protein
6.
Exp Mol Med ; 50(5): 1-10, 2018 05 22.
Article in English | MEDLINE | ID: mdl-29789565

ABSTRACT

Studies using the European rabbit Oryctolagus cuniculus contributed to elucidating numerous fundamental aspects of antibody structure and diversification mechanisms and continue to be valuable for the development and testing of therapeutic humanized polyclonal and monoclonal antibodies. Additionally, during the last two decades, the use of the European rabbit as an animal model has been increasingly extended to many human diseases. This review documents the continuing wide utility of the rabbit as a reliable disease model for development of therapeutics and vaccines and studies of the cellular and molecular mechanisms underlying many human diseases. Examples include syphilis, tuberculosis, HIV-AIDS, acute hepatic failure and diseases caused by noroviruses, ocular herpes, and papillomaviruses. The use of rabbits for vaccine development studies, which began with Louis Pasteur's rabies vaccine in 1881, continues today with targets that include the potentially blinding HSV-1 virus infection and HIV-AIDS. Additionally, two highly fatal viral diseases, rabbit hemorrhagic disease and myxomatosis, affect the European rabbit and provide unique models to understand co-evolution between a vertebrate host and viral pathogens.


Subject(s)
Disease Models, Animal , Animals , Biological Evolution , Humans , Immune System/physiology , Immunity , Rabbits
7.
J Mol Evol ; 83(1-2): 12-25, 2016 08.
Article in English | MEDLINE | ID: mdl-27306379

ABSTRACT

Studies of the process of pseudogenization have widened our understanding of adaptive evolutionary change. In Rabbit, an alteration at the second extra-cellular loop of the CCR5 chemokine receptor was found to be associated with the pseudogenization of one of its prime ligands, the chemokine CCL8. This relationship has raised questions about the existence of a causal link between both events, which would imply adaptive gene loss. This hypothesis is evaluated here by tracing back the history of the genetic modifications underlying the chemokine pseudogenization. The obtained data indicate that mutations at receptor and ligand genes occurred after the lineage split of New World Leporids versus Old World Leporids and prior to the generic split of the of Old World species studied, which occurred an estimated 8-9 million years ago. More important, they revealed the emergence, before this zoographical split, of a "slippery" nucleotide motif (CCCCGGG) at the 3' region of CCL8-exon2. Such motives are liable of generating +1G or -1G frameshifts, which could, however, be overcome by "translesion" synthesis or somatic reversion. The CCL8 pseudogenization in the Old World lineage was apparently initiated by three synapomorphic point mutations at the exon2-intron2 boundary which provide at short range premature terminating codons, independently of the reading frame imposed by the slippery motif. The presence of this motif in New World Leporids might allow verifying this scenario. The importance of CCL8-CCR5 signaling in parasite-host interaction would suggest that the CCL8 knock-out in Old World populations might be related to changes in pathogenic environment.


Subject(s)
Adaptation, Biological/genetics , Chemokine CCL8/genetics , Evolution, Molecular , Animals , Chemokine CCL8/metabolism , Mutation , Phylogeny , Rabbits , Receptors, CCR5/genetics , Receptors, CCR5/metabolism , Sequence Analysis, DNA
8.
Innate Immun ; 21(8): 787-801, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26395994

ABSTRACT

ILs, as essential innate immune modulators, are involved in an array of biological processes. In the European rabbit (Oryctolagus cuniculus) IL-1α, IL-1ß, IL-2, IL-4, IL-8, IL-10, IL-12A, IL-12B, IL-15 and IL-18 have been implicated in inflammatory processes and in the immune response against rabbit hemorrhagic disease virus and myxoma virus infections. In this study we characterized these ILs in six Lagomorpha species (European rabbit, pygmy rabbit, two cottontail rabbit species, European brown hare and American pika). Overall, these ILs are conserved between lagomorphs, including in their exon/intron structure. Most differences were observed between leporids and American pika. Indeed, when comparing both, some relevant differences were observed in American pika, such as the location of the stop codon in IL-1α and IL-2, the existence of a different transcript in IL8 and the number of cysteine residues in IL-1ß. Changes at N-glycosylation motifs were also detected in IL-1, IL-10, IL-12B and IL-15. IL-1α is the protein that presents the highest evolutionary distances, which is in contrast to IL-12A where the distances between lagomorphs are the lowest. For all these ILs, sequences of human and European rabbit are more closely related than between human and mouse or European rabbit and mouse.


Subject(s)
Interleukin-1alpha/genetics , Interleukin-1beta/chemistry , Interleukin-2/genetics , Interleukin-8/genetics , Interleukins/genetics , Lagomorpha/immunology , Animals , Codon, Terminator , Evolution, Molecular , Humans , Lagomorpha/genetics , Mice , Rabbits , Species Specificity
9.
BMC Genet ; 13: 72, 2012 Aug 15.
Article in English | MEDLINE | ID: mdl-22894773

ABSTRACT

BACKGROUND: Recent studies in human have highlighted the importance of the monocyte chemotactic proteins (MCP) in leukocyte trafficking and their effects in inflammatory processes, tumor progression, and HIV-1 infection. In European rabbit (Oryctolagus cuniculus) one of the prime MCP targets, the chemokine receptor CCR5 underwent a unique structural alteration. Until now, no homologue of MCP-2/CCL8a, MCP-3/CCL7 or MCP-4/CCL13 genes have been reported for this species. This is interesting, because at least the first two genes are expressed in most, if not all, mammals studied, and appear to be implicated in a variety of important chemokine ligand-receptor interactions. By assessing the Rabbit Whole Genome Sequence (WGS) data we have searched for orthologs of the mammalian genes of the MCP-Eotaxin cluster. RESULTS: We have localized the orthologs of these chemokine genes in the genome of European rabbit and compared them to those of leporid genera which do (i.e. Oryctolagus and Bunolagus) or do not share the CCR5 alteration with European rabbit (i.e. Lepus and Sylvilagus). Of the Rabbit orthologs of the CCL8, CCL7, and CCL13 genes only the last two were potentially functional, although showing some structural anomalies at the protein level. The ortholog of MCP-2/CCL8 appeared to be pseudogenized by deleterious nucleotide substitutions affecting exon1 and exon2. By analyzing both genomic and cDNA products, these studies were extended to wild specimens of four genera of the Leporidae family: Oryctolagus, Bunolagus, Lepus, and Sylvilagus. It appeared that the anomalies of the MCP-3/CCL7 and MCP-4/CCL13 proteins are shared among the different species of leporids. In contrast, whereas MCP-2/CCL8 was pseudogenized in every studied specimen of the Oryctolagus - Bunolagus lineage, this gene was intact in species of the Lepus - Sylvilagus lineage, and was, at least in Lepus, correctly transcribed. CONCLUSION: The biological function of a gene was often revealed in situations of dysfunction or gene loss. Infections with Myxoma virus (MYXV) tend to be fatal in European rabbit (genus Oryctolagus), while being harmless in Hares (genus Lepus) and benign in Cottontail rabbit (genus Sylvilagus), the natural hosts of the virus. This communication should stimulate research on a possible role of MCP-2/CCL8 in poxvirus related pathogenicity.


Subject(s)
Chemokine CCL8/genetics , Hares/genetics , Pseudogenes/genetics , Rabbits/genetics , Amino Acid Motifs , Animals , Base Sequence , Chemokine CCL7/genetics , Exons , Genetic Variation , Genome , Hares/classification , Humans , Molecular Sequence Data , Monocyte Chemoattractant Proteins/genetics , Phylogeny , Rabbits/classification , Sequence Alignment
10.
BMC Evol Biol ; 11: 294, 2011 Oct 08.
Article in English | MEDLINE | ID: mdl-21982459

ABSTRACT

BACKGROUND: Since the first report of the antiretroviral restriction factor TRIM5α in primates, several orthologs in other mammals have been described. Recent studies suggest that leporid retroviruses like RELIK, the first reported endogenous lentivirus ever, may have imposed positive selection in TRIM5α orthologs of the European rabbit and European brown hare. Considering that RELIK must already have been present in a common ancestor of the leporid genera Lepus, Sylvilagus and Oryctolagus, we extended the study of evolutionary patterns of TRIM5α to other members of the Leporidae family, particularly to the genus Sylvilagus. Therefore, we obtained the TRIM5α nucleotide sequences of additional subspecies and species of the three leporid genera. We also compared lagomorph TRIM5α deduced protein sequences and established TRIM5α gene and TRIM5α protein phylogenies. RESULTS: The deduced protein sequence of Iberian hare TRIM5α was 89% identical to European rabbit TRIM5α, although high divergence was observed at the PRYSPRY v1 region between rabbit and the identified alleles from this hare species (allele 1: 50% divergence; allele 2: 53% divergence). A high identity was expected between the Sylvilagus and Oryctolagus TRIM5α proteins and, in fact, the Sylvilagus TRIM5α was 91% identical to the Oryctolagus protein. Nevertheless, the PRYSPRY v1 region was only 50% similar between these genera. Selection analysis of Lagomorpha TRIM5α proteins identified 25 positively-selected codons, 11 of which are located in the PRYSPRY v1 region, responsible for species specific differences in viral capsid recognition. CONCLUSIONS: By extending Lagomorpha TRIM5α studies to an additional genus known to bear RELIK, we verified that the divergent species-specific pattern observed between the Oryctolagus and Lepus PRYSPRY-domains is also present in Sylvilagus TRIM5α. This work is one of the first known studies that compare the evolution of the antiretroviral restriction factor TRIM5α in different mammalian groups, Lagomorpha and Primates.


Subject(s)
Carrier Proteins/genetics , Lagomorpha/genetics , Lagomorpha/virology , Rabbits/genetics , Rabbits/virology , Retroviridae/genetics , Amino Acid Sequence , Animals , Base Sequence , Carrier Proteins/chemistry , Molecular Sequence Data , Phylogeny , Protein Structure, Tertiary , Sequence Alignment , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...