Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Int ; 172: 107760, 2023 02.
Article in English | MEDLINE | ID: mdl-36708630

ABSTRACT

The EU, seeking to be a global leader in the fight against climate change, is moving ahead with ambitious policies to mitigate greenhouse gases emissions. In this context, the Fit for 55 package (FF55) is a set of proposals to revise and update EU legislation, to ensure that policies are in line with the climate goals of cutting emissions by at least 55% by 2030. Whilst these policies are designed for climate purposes, they will have positive side-effects (co-benefits) on air quality. Separately, additional policies are also in place to reduce emissions of related air pollutants and to improve air quality concentrations on EU territory. In this work, through a modelling study, we analyse the benefits of these policies via the health benefits arising from the resulting reductions in yearly average PM2.5 concentrations. Results are analysed by assessing and comparing morbidity and mortality impacts as computed using both the HRAPIE (Health risks of air pollution in Europe, WHO, as implemented in the CaRBonH model) and the GBD (Global Burden of Disease, as implemented in FASST-GBD model) approaches. Even when considering the uncertainty and variability in the results obtained using the two approaches, it is clear that EU policies can bring health and economic benefit in EU, with several Billions of Euro of benefits both in terms of morbidity and mortality indicators.


Subject(s)
Air Pollutants , Air Pollution , Greenhouse Gases , Particulate Matter/analysis , Air Pollution/analysis , Air Pollutants/analysis , Greenhouse Gases/analysis , Climate Change , Policy
2.
Environ Int ; 156: 106699, 2021 11.
Article in English | MEDLINE | ID: mdl-34171590

ABSTRACT

Given the remaining air quality issues in many European regions, smart air quality strategies are necessary to reduce the burden of poor air quality. While designing effective strategies for non-reactive primary pollutants is straightforward, this is not the case for secondary pollutants for which the relationship between emission changes and the resulting concentration changes can be nonlinear. Under such conditions, strategies targeting the largest emitting sources might not be the most effective. In this work, we provide elements to better understand the role of the main emission precursors (SO2, NOx, NH3) on the formation of secondary inorganic aerosols. By quantifying the PM2.5 sensitivity to emission reductions for each of these three precursors, we define and quantify the intensity of PM2.5 formation chemical regimes across Europe. We find that for emission reductions limited to 25%, the relation between emission and PM concentration changes remain mostly linear, with the exception of the Po Valley where non-linearities reach more than 30% in winter. When emission reductions increase to 50%, non-linearity reaches more than 60% in the Po Valley but stay below 30% in the rest of Europe. In terms of implications on abatement strategies, our findings can be summarized in the following key messages: (1) reducing SO2 emissions where abundant is always efficient (e.g. eastern Europe and Balkans); (2) reducing NH3 emissions is more efficient where it is less abundant (e.g. the Po basin) than where it is abundant, given the limiting role of NH3 in the PM formation; (3) reducing NOx emissions where NOx are abundant can be counter-productive with potential increases of PM due to the increased oxidant capacity of the atmosphere (e.g. Po valley); (4) because regions with both NH3 and NOx sensitive chemical regimes are mixed within countries, both need to be reduced together, as pollution reduction policies need at least to be defined at a country level; (6) while for NH3 the focus is clearly on wintertime, it is the whole year for NOx. The simulations proposed in this work could be used as benchmark for other models as they constitute the type of scenarios required to support air quality strategies. In addition, the straight and systematic emission reductions imposed for the scenarios in this work are well suited for a better understanding of the behavior of the model, in terms of responses to emission reductions.


Subject(s)
Air Pollutants , Air Pollution , Air Pollutants/analysis , Air Pollution/analysis , Air Pollution/prevention & control , Balkan Peninsula , Environmental Monitoring , Particulate Matter/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...