Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mater Sci Eng C Mater Biol Appl ; 111: 110758, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32279776

ABSTRACT

Porous titanium materials have gained interest as prosthesis materials due to their similar mechanical properties to the human bone, biocompatibility, and high corrosion resistance. The presence of pores in the metal matrix implies a decrease in the elastic modulus and an increase in the active area, perhaps improving the osseointegration. Corrosion resistance is a critical consideration as corrosion may lead not only to mechanical failure but also the release of ions and/or particles to the bloodstream. In this work, a novel Ti-Nb-Ta-Fe-Mn alloy with varying percentage of porosity (25, 31 and 37 v/v%) was exposed to simulated body fluid (SBF) at 37 °C and its corrosion resistance was investigated using electrochemical techniques and surface analysis as a function of exposure time. Open circuit potential and polarization curves revealed that the effect of porosity was mainly on the shift of the corrosion potential to more negative values with a slight increase in the anodic current. A passive range was also observed, which was not influenced either by increased exposure time or increased porosity. Therefore, a change in the surface specific area could have taken place during the exposure, which is not necessarily related to a corrosion process. Moreover, a typical porous electrode behavior was identified by electrochemical Impedance spectroscopy, without any significant change over time. No release of metal ions was detected by on line ICP-AES, either at the open circuit potential or upon polarizing the samples up to 2 V vs. SCE, whereas only traces elements (Fe and Mn 1 nmol/s cm2) were detected in the electrolyte accumulating all released ions during 30 days of exposure. Additionally, the surface analysis showed thickening of the oxide layer with exposure time. Therefore, the stability of the passive layer and low release of ions indicate that the porous alloys are suitable for further study as prosthesis materials.


Subject(s)
Alloys/chemistry , Body Fluids/chemistry , Biocompatible Materials/chemistry , Dielectric Spectroscopy , Elastic Modulus , Electrochemical Techniques , Electrodes , Humans , Iron/chemistry , Manganese/chemistry , Niobium/chemistry , Porosity , Surface Properties , Tantalum/chemistry , Titanium/chemistry
2.
Anal Chem ; 88(24): 12108-12115, 2016 12 20.
Article in English | MEDLINE | ID: mdl-28193063

ABSTRACT

The local electrochemical behavior of a solid-liquid interface can be studied by electrochemical impedance spectroscopy (EIS). The investigated surface area can be delimited by adding a drop of solution, which forms an interface between the liquid drop and the working electrode, and performing the measurements inside. The size of the drop must be sufficiently small for a simultaneous wettability characterization (from the contact angle measurement) and appropriately large so that wettability is not influenced by the presence of the working and the counter electrode inserted in the droplet. In this work, we showed that EIS measurements can be performed in a solution droplet of 2 to 4 µL, although the electrochemical cell lacks the usual geometry. For our measurements, we studied a model system consisting of a KCl aqueous solution of [Fe(CN)6]3-/4- redox couple at a Pt electrode. All the results were compared with those obtained for a bulk configuration. The sessile drop configuration and the EIS response were modeled using finite element method for different electrode sizes and configurations to account for electrochemical kinetics and both current and potential distributions.

SELECTION OF CITATIONS
SEARCH DETAIL
...