Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
Front Bioeng Biotechnol ; 8: 538203, 2020.
Article in English | MEDLINE | ID: mdl-33344427

ABSTRACT

The sponge implant has been applied as an important in vivo model for the study of inflammatory processes as it induces the migration, proliferation, and accumulation of inflammatory cells, angiogenesis, and extracellular matrix deposition in its trabeculae. The characterization of immune events in sponge implants would be useful in identifying the immunological events that could support the selection of an appropriate experimental model (mouse strain) and time post-implant analysis in optimized protocols for novel applications of this model such as in biomolecules screening. Here, the changes in histological/morphometric, immunophenotypic and functional features of infiltrating leukocytes (LEU) were assessed in sponge implants for Swiss, BALB/c, and C57BL/6 mice. A gradual increase of fibrovascular stroma and a progressive decrease in LEU infiltration, mainly composed of polymorphonuclear cells with progressive shift toward mononuclear cells at late time-points were observed over time. Usually, Swiss mice presented a more prominent immune response with late mixed pattern (pro-inflammatory/anti-inflammatory: IL-2/IFN-γ/IL-4/IL-10/IL-17) of cytokine production. While BALB/c mice showed an early activation of the innate response with a controlled cytokine profile (low inflammatory potential), C57BL/6 mice presented a typical early pro-inflammatory (IL-6/TNF/IFN-γ) response with persistent neutrophilic involvement. A rational selection of the ideal time-point/mouse-lineage would avoid bias or tendentious results. Criteria such as low number of increased biomarkers, no recruitment of cytotoxic response, minor cytokine production, and lower biomarker connectivity (described as biomarker signature analysis and network analysis) guided the choice of the best time-point for each model (Day5/Swiss; Day7/BALB/c; Day6/C57BL/6) with wide application for screening purposes, such as identification of therapeutic biomolecules, selection of antigens/adjuvants, and follow-up of innate and adaptive immune response to vaccines candidates.

3.
Vet Parasitol ; 271: 87-97, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31303211

ABSTRACT

The natural history of canine visceral leishmaniasis (CVL) has been well described, particularly with respect to the parasite load in different tissues and immunopathological changes according to the progression of clinical forms. The biomarkers evaluated in these studies provide support for the improvement of the tools used in developing vaccines against CVL. Thus, we describe the major studies using the dog model that supplies the rationale for including different biomarkers (tissue parasitism, histopathology, hematological changes, leucocytes immunophenotyping, cytokines patterns, and in vitroco-culture systems using purified T-cells subsets and macrophages infected with L. infantum) for immunogenicity and protection evaluations in phases I and II applied to pre-clinical and clinical vaccine trials against CVL. The search for biomarkers related to resistance or susceptibility has revealed a mixed cytokine profile with a prominent proinflammatory immune response as relevant for Leishmania replication at low levels as observed in asymptomatic dogs (highlighted by high levels of IFN-γ and TNF-α and decreased levels in IL-4, TGF-ß and IL-10). Furthermore, increased levels in CD4+ and CD8+ T-cell subsets, presenting intracytoplasmic proinflammatory cytokine balance, have been associated with a resistance profile against CVL. In contrast, a polyclonal B-cell expansion towards plasma cell differentiation contributes to high antibody production, which is the hallmark of symptomatic dogs associated with high susceptibility in CVL. Finally, the different studies used to analyze biomarkers have been incorporated into vaccine immunogenicity and protection evaluations. Those biomarkers identified as resistance or susceptibility markers in CVL have been used to evaluate the vaccine performance against L. infantum in a kennel trial conducted before the field trial in an area known to be endemic for visceral leishmaniasis. This rationale has been a guiding force in the testing and selection of the best vaccine candidates against CVL and provides a way for the veterinary industry to register commercial immunobiological products.


Subject(s)
Biomarkers/blood , Dog Diseases/blood , Leishmaniasis, Visceral/veterinary , Animals , Biomarkers/analysis , Disease Susceptibility/metabolism , Dog Diseases/immunology , Dog Diseases/parasitology , Dogs , Leishmaniasis, Visceral/blood , Leishmaniasis, Visceral/immunology , Leishmaniasis, Visceral/parasitology , Protozoan Vaccines/immunology
4.
Parasit Vectors ; 9: 472, 2016 08 30.
Article in English | MEDLINE | ID: mdl-27577735

ABSTRACT

BACKGROUND: In past years, many researchers have sought canine visceral leishmaniasis (CVL) prevention through the characterization of Leishmania antigens as vaccine candidates. Despite these efforts, there is still no efficient vaccine for CVL control. METHODS: In the present study, we performed a pre-clinical vaccine trial using BALB/c mice to compare the effects of the multicomponent LBSap vaccine with those of Leish-Tec® and Leishmune®. Blood was collected to determine the frequency of peripheral blood cells and to evaluate hematologic and immunophenotypic parameters. Liver and spleen samples were collected for parasitological quantification, and spleen samples were used to access the cytokine profile. RESULTS: When measuring total IgG and IgG1 anti-Leishmania levels after the third vaccination and L. infantum challenge, it was evident that all vaccines were able to induce humoral immune response. Regarding the innate immune response, increased levels of NK CD3(-)CD49(+) cells were the hallmark of all vaccinated groups, whereas only the Leish-Tec® group displayed a high frequency of CD14(+) monocytes after L. infantum challenge. Moreover, CD3(+)CD4(+) T cells were the main circulating lymphocytes induced after L. infantum challenge with all evaluated vaccines. Importantly, after L. infantum challenge, splenocytes from the Leishmune® vaccine produced high levels of IL-2, whereas a prominent type 1 immune response was the hallmark of the LBSap vaccine, which presented high levels of IL-2, IL-6, TNF-α, and IFN-γ. The efficacy analysis using real-time polymerase chain reaction demonstrated a reduction in the parasitism in the spleen (Leishmune®: 64 %; LBSap: 42 %; and Leish-Tec®: 36 %) and liver (Leishmune®: 71 %; LBSap: 62 %; and Leish-Tec®: 48 %). CONCLUSIONS: The dataset led to the conclusion that the LBSap vaccination was able to induce immune and efficacy profiles comparable with those of commercial vaccines, thus demonstrating its potential as a promising vaccine candidate for visceral leishmaniasis control.


Subject(s)
Antigens, Protozoan/immunology , Leishmania/immunology , Leishmaniasis, Visceral/prevention & control , Protozoan Vaccines/immunology , Animals , Cytokines/genetics , Cytokines/metabolism , Female , Gene Expression Regulation/immunology , Immunity, Innate , Immunoglobulin G/blood , Leishmania/metabolism , Liver/parasitology , Lymphocytes/classification , Lymphocytes/physiology , Mice , Mice, Inbred BALB C , Spleen/parasitology
5.
Vaccine ; 33(2): 280-8, 2015 Jan 03.
Article in English | MEDLINE | ID: mdl-25475955

ABSTRACT

Live attenuated Leishmania donovani parasites such as LdCen(-/-) have been shown elicit protective immunity against leishmanial infection in mice and hamster models. Previously, we have reported on the induction of strong immunogenicity in dogs upon vaccination with LdCen(-/-) including an increase in immunoglobulin isotypes, higher lymphoproliferative response, higher frequencies of activated CD4(+) and CD8(+) T cells, IFN-γ production by CD8(+) T cells, increased secretion of TNF-α and IL-12/IL-23p40 and, finally, decreased secretion of IL-4. To further explore the potential of LdCen(-/-) parasites as vaccine candidates, we performed a 24-month follow up of LdCen(-/-) immunized dogs after challenge with virulent Leishmania infantum, aiming determination of parasite burden by qPCR, antibody production (ELISA) and cellular responses (T cell activation and cytokine production) by flow cytometry and sandwich ELISA. Our data demonstrated that vaccination with a single dose of LdCen(-/-) (without any adjuvant) resulted in the reduction of up to 87.3% of parasite burden after 18 months of virulent challenge. These results are comparable to those obtained with commercially available vaccine in Brazil (Leishmune(®)). The protection was associated with antibody production and CD4(+) and CD8(+) proliferative responses, as well as T cell activation and significantly higher production of IFN-γ, IL-12/IL-23p40 and TNF-α, which was comparable to responses induced by immunization with Leishmune(®), with significant differences when compared to control animals (Placebo). Moreover, only animals immunized with LdCen(-/-) expressed lower levels of IL-4 when compared to animals vaccinated either with Leishmune(®) or PBS. Our results support further studies aiming to demonstrate the potential of genetically modified live attenuated L. donovani vaccine to control L. infantum transmission in endemic areas for CVL.


Subject(s)
Dog Diseases/prevention & control , Leishmania donovani/genetics , Leishmania donovani/immunology , Leishmania infantum/immunology , Leishmaniasis Vaccines/administration & dosage , Leishmaniasis Vaccines/immunology , Leishmaniasis, Visceral/veterinary , Animals , Antibodies, Protozoan/blood , Brazil , Disease Models, Animal , Dog Diseases/immunology , Dogs , Enzyme-Linked Immunosorbent Assay , Follow-Up Studies , Gene Deletion , Interferon-gamma/blood , Interleukin-12/blood , Interleukin-4/blood , Leishmaniasis, Visceral/prevention & control , Lymphocyte Activation , Parasite Load/veterinary , Real-Time Polymerase Chain Reaction , Tumor Necrosis Factor-alpha/blood , Vaccination/veterinary , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...