Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Viruses ; 16(4)2024 04 09.
Article in English | MEDLINE | ID: mdl-38675917

ABSTRACT

The incidence of chikungunya has dramatically surged worldwide in recent decades, imposing an expanding burden on public health. In recent years, South America, particularly Brazil, has experienced outbreaks that have ravaged populations following the rapid dissemination of the chikungunya virus (CHIKV), which was first detected in 2014. The primary vector for CHIKV transmission is the urban mosquito species Aedes aegypti, which is highly prevalent throughout Brazil. However, the impact of the locally circulating CHIKV genotypes and specific combinations of local mosquito populations on vector competence remains unexplored. Here, we experimentally analyzed and compared the infectivity and transmissibility of the CHIKV-ECSA lineage recently isolated in Brazil among four Ae. aegypti populations collected from different regions of the country. When exposed to CHIKV-infected AG129 mice for blood feeding, all the mosquito populations displayed high infection rates and dissemination efficiency. Furthermore, we observed that all the populations were highly efficient in transmitting CHIKV to a vertebrate host (naïve AG129 mice) as early as eight days post-infection. These results demonstrate the high capacity of Brazilian Ae. aegypti populations to transmit the locally circulating CHIKV-ECSA lineage. This observation could help to explain the high prevalence of the CHIKV-ECSA lineage over the Asian lineage, which was also detected in Brazil in 2014. However, further studies comparing both lineages are necessary to gain a better understanding of the vector's importance in the epidemiology of CHIKV in the Americas.


Subject(s)
Aedes , Chikungunya Fever , Chikungunya virus , Mosquito Vectors , Animals , Aedes/virology , Chikungunya virus/genetics , Chikungunya virus/classification , Chikungunya virus/physiology , Chikungunya virus/isolation & purification , Brazil/epidemiology , Chikungunya Fever/transmission , Chikungunya Fever/virology , Chikungunya Fever/epidemiology , Mice , Mosquito Vectors/virology , Genotype , Female , Phylogeny
2.
bioRxiv ; 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37961153

ABSTRACT

The global incidence of chikungunya has surged in recent decades, with South America, particularly Brazil, experiencing devastating outbreaks. The primary vector for transmitting CHIKV in urban areas is the mosquito species Aedes aegypti, which is very abundant in Brazil. However, little is known about the impact of locally circulating CHIKV genotypes and specific combinations of mosquito populations on vector competence. In this study, we analyzed and compared the infectivity and transmissibility of a recently isolated CHIKV-ECSA lineage from Brazil among four Ae. aegypti populations collected from different regions of the country. When exposed to CHIKV-infected mice for blood feeding, all mosquito populations showed high infection rates and dissemination efficiency. Moreover, using a mouse model to assess transmission rates in a manner that better mirrors natural cycles, we observed that these populations exhibit highly efficient transmission rates of CHIKV-ECSA. Our findings underscore the robust capability of Brazilian Ae. aegypti populations to transmit the locally circulating CHIKV-ECSA lineage, potentially explaining its higher prevalence compared to the Asian lineage also introduced in Brazil.

3.
Pathogens ; 11(8)2022 Aug 03.
Article in English | MEDLINE | ID: mdl-36015000

ABSTRACT

Arboviruses (an acronym for "arthropod-borne virus"), such as dengue, yellow fever, Zika, and Chikungunya, are important human pathogens transmitted by mosquitoes. These viruses impose a growing burden on public health. Despite laboratory mice having been used for decades for understanding the basic biological phenomena of these viruses, it was only recently that researchers started to develop immunocompromised animals to study the pathogenesis of arboviruses and their transmission in a way that parallels natural cycles. Here, we show that the AG129 mouse (IFN α/ß/γ R-/-) is a suitable and comprehensive vertebrate model for studying the mosquito vector competence for the major arboviruses of medical importance, namely the dengue virus (DENV), yellow fever virus (YFV), Zika virus (ZIKV), Mayaro virus (MAYV), and Chikungunya virus (CHIKV). We found that, after intraperitoneal injection, AG129 mice developed a transient viremia lasting several days, peaking on day two or three post infection, for all five arboviruses tested in this study. Furthermore, we found that the observed viremia was ample enough to infect Aedes aegypti during a blood meal from the AG129 infected mice. Finally, we demonstrated that infected mosquitoes could transmit each of the tested arboviruses back to naïve AG129 mice, completing a full transmission cycle of these vector-borne viruses. Together, our data show that A129 mice are a simple and comprehensive vertebrate model for studies of vector competence, as well as investigations into other aspects of mosquito biology that can affect virus-host interactions.

4.
Viruses ; 13(5)2021 04 25.
Article in English | MEDLINE | ID: mdl-33923055

ABSTRACT

The emergence of new human viral pathogens and re-emergence of several diseases are of particular concern in the last decades. Oropouche orthobunyavirus (OROV) is an arbovirus endemic to South and Central America tropical regions, responsible to several epidemic events in the last decades. There is little information regarding the ability of OROV to be transmitted by urban/peri-urban mosquitoes, which has limited the predictability of the emergence of permanent urban transmission cycles. Here, we evaluated the ability of OROV to infect, replicate, and be transmitted by three anthropophilic and urban species of mosquitoes, Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus. We show that OROV is able to infect and efficiently replicate when systemically injected in all three species tested, but not when orally ingested. Moreover, we find that, once OROV replication has occurred in the mosquito body, all three species were able to transmit the virus to immunocompromised mice during blood feeding. These data provide evidence that OROV is restricted by the midgut barrier of three major urban mosquito species, but, if this restriction is overcome, could be efficiently transmitted to vertebrate hosts. This poses a great risk for the emergence of permanent urban cycles and geographic expansion of OROV to other continents.


Subject(s)
Aedes/virology , Culex/virology , Mosquito Vectors/virology , Orthobunyavirus/physiology , Animals , Bunyaviridae Infections/transmission , Bunyaviridae Infections/virology , Disease Models, Animal , Female , Host Specificity , Host-Pathogen Interactions , Mice , Mice, Knockout
5.
Viruses ; 12(8)2020 08 10.
Article in English | MEDLINE | ID: mdl-32784948

ABSTRACT

Mayaro virus (MAYV), a sylvatic arbovirus belonging to the Togaviridae family and Alphavirus genus, is responsible for an increasing number of outbreaks in several countries of Central and South America. Despite Haemagogus janthinomys being identified as the main vector of MAYV, laboratory studies have already demonstrated the competence of Aedes aegypti to transmit MAYV. It has also been demonstrated that the WolbachiawMel strain is able to impair the replication and transmission of MAYV in Ae. aegypti. In Ae. aegypti, the small interfering RNA (siRNA) pathway is an important antiviral mechanism; however, it remains unclear whether siRNA pathway acts against MAYV infection in Ae. aegypti. The main objective of this study was to determine the contribution of the siRNA pathway in the control of MAYV infection. Thus, we silenced the expression of AGO2, an essential component of the siRNA pathway, by injecting dsRNA-targeting AGO2 (dsAGO2). Our results showed that AGO2 is required to control MAYV replication upon oral infection in Wolbachia-free Ae. aegypti. On the other hand, we found that Wolbachia-induced resistance to MAYV in Ae. aegypti is independent of the siRNA pathway. Our study brought new information regarding the mechanism of viral protection, as well as on Wolbachia mediated interference.


Subject(s)
Aedes/microbiology , Aedes/virology , Alphavirus/genetics , RNA Interference , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Wolbachia/physiology , Aedes/immunology , Alphavirus Infections/immunology , Alphavirus Infections/virology , Animals , Female , Humans , Immunity, Innate , Mosquito Vectors/immunology , Mosquito Vectors/microbiology , Mosquito Vectors/virology , Wolbachia/immunology
6.
PLoS Negl Trop Dis ; 14(4): e0007518, 2020 04.
Article in English | MEDLINE | ID: mdl-32287269

ABSTRACT

Newly emerging or re-emerging arthropod-borne viruses (arboviruses) are important causes of human morbidity and mortality worldwide. Arboviruses such as Dengue (DENV), Zika (ZIKV), Chikungunya (CHIKV), and West Nile virus (WNV) have undergone extensive geographic expansion in the tropical and sub-tropical regions of the world. In the Americas the main vectors of DENV, ZIKV, and CHIKV are mosquito species adapted to urban environments, namely Aedes aegypti and Aedes albopictus, whereas the main vector of WNV is Culex quinquefasciatus. Given the widespread distribution in the Americas and high permissiveness to arbovirus infection, these mosquito species may play a key role in the epidemiology of other arboviruses normally associated with sylvatic vectors. Here, we test this hypothesis by determining the vector competence of Ae. aegypti, Ae. albopictus, and Cx. quinquefasciatus to Mayaro (MAYV) virus, a sylvatic arbovirus transmitted mainly by Haemagogus janthinomys that has been causing an increasing number of outbreaks in South America, namely in Brazil. Using field mosquitoes from Brazil, female mosquitoes were experimentally infected, and their competence for infection and transmission rates of MAYV was evaluated. We found consistent infection rate for MAYV in Ae. aegypti (57.5%) and Ae. albopictus (61.6%), whereas very low rates were obtained for Cx. quinquefasciatus (2.5%). Concordantly, we observed high potential transmission ability in Ae. aegypti and Ae. albopictus (69.5% and 71.1% respectively), in contrast to Cx. quinquefasciatus, which could not transmit the MAYV. Notably, we found that very low quantities of virus present in the saliva (undetectable by RT-qPCR) were sufficiently virulent to guarantee transmission. Although Ae. aegypti and Ae. albopictus mosquitoes are not the main vectors for MAYV, our studies suggest that these mosquitoes could play a significant role in the transmission of this arbovirus, since both species showed significant vector competence for MAYV (Genotype D), under laboratory conditions.


Subject(s)
Aedes/virology , Alphavirus Infections/virology , Alphavirus/isolation & purification , Culex/virology , Disease Transmission, Infectious , Alphavirus/genetics , Alphavirus/growth & development , Alphavirus Infections/transmission , Animals , Brazil , Female , Real-Time Polymerase Chain Reaction , Saliva/virology , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL
...