Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Bioprocess Biosyst Eng ; 42(10): 1625-1634, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31267175

ABSTRACT

In this work, a fed-batch approach was adopted to overcome propionic acid lipase inactivation effects in the benzyl propionate direct esterification mediated by lipases. The ester synthesis was performed using commercial immobilized (Novozym 435) and lyophilized form Candida antarctica fraction B lipase (Cal B) as biocatalysts of the esterification between benzyl alcohol and propionic acid in a solvent-free system. The reaction involved the propionic acid-controlled addition during the first 5 h ensuring an excess of alcohol to dilute the media. The biocatalyst Novozym 435 showed a good performance in the first cycle of the fed-batch esterification, ensuring 90 and 99% of conversion at substrates molar ratio of 1:1 and 1:5 (acid:alcohol), respectively. However, the enzyme lost the activity and the conversions were sharply reduced at the second cycle. A novel qualitative protein content analysis by optical microscopy showed that the lipase was desorbed from the support after the esterification, and this behavior was strongly related to the presence of propionic acid in the reaction medium. The lyophilized Cal B was also tested as biocatalyst of the benzyl propionate esterification and showed a similar performance (related to the Novozym 435) in ester conversion and initial reaction rates for all substrates molar ratios tested. Since the substrates affected the performance of the Novozym 435, the lyophilized Cal B is the most suitable catalyst to the benzyl propionate esterification with conversions above 90%, considering a the fed-batch approach in a solvent-free system.


Subject(s)
Biocatalysis , Enzymes, Immobilized/chemistry , Fungal Proteins/chemistry , Lipase/chemistry , Propionates/chemical synthesis , Esterification
2.
Mater Sci Eng C Mater Biol Appl ; 97: 198-207, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30678904

ABSTRACT

Geranyl cinnamate is an ester derived from natural compounds that has excellent antibacterial properties but is susceptible to degradation in the presence of oxygen, light, heat, moisture and other aggressive agents, making it unstable. In this work, the encapsulation of geranyl cinnamate in polycaprolactone (PCL) nanoparticles and its antibacterial properties towards Escherichia coli and Staphylococcus aureus were investigated. PCL nanoparticles loaded with geranyl cinnamate were obtained by a miniemulsification/solvent evaporation technique resulting in spherical nanoparticles with an average diameter of 177.6 nm. TGA showed that geranyl cinnamate evaporation was retarded at 20 °C after encapsulation. Aqueous dispersions of geranyl cinnamate-loaded PCL nanoparticles stored at 4 °C presented good colloidal stability over 60 days. Minimum inhibitory concentration (MIC) tests showed that geranyl cinnamate was not released from the PCL nanoparticles in aqueous solution even after 72 h, requiring the use of a trigger (e.g. oil phase, lipase to degrade the polymer matrix) to release the active compound.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Cinnamates/chemistry , Cinnamates/pharmacology , Nanoparticles/chemistry , Polyesters/chemistry , Calorimetry, Differential Scanning , Colloids , Drug Compounding/methods , Drug Stability , Escherichia coli/drug effects , Microbial Sensitivity Tests , Particle Size , Spectroscopy, Fourier Transform Infrared , Staphylococcus aureus/drug effects , Temperature , Thermogravimetry
3.
Bioprocess Biosyst Eng ; 41(5): 585-591, 2018 May.
Article in English | MEDLINE | ID: mdl-29350294

ABSTRACT

Benzyl propionate is an aromatic ester that possesses a fruity odor and is usually found in nature in the composition of some fruits such as plums and melons. This work aimed for the benzyl propionate synthesis by esterification using a new immobilized enzyme preparation with low-cost material from Candida antarctica (NS 88011) and three commercial immobilized lipases (Novozym 435, Lipozyme TL-IM and Lipozyme RM-IM). Novozym 435 had the best performance even when the solvent tert-butanol was absent of the reaction medium. Results from a 22 factorial design showed that an increase in the enzyme amount led to a higher conversion, even when the temperature was kept at the low value. Currently, no research had synthesized successfully benzyl propionate via esterification mediated by lipases; and we reached an ester conversion of ~ 44% after 24 h indicating that it is a promising route for benzyl propionate biotechnological production.


Subject(s)
Candida/enzymology , Enzymes, Immobilized/chemistry , Esters/chemical synthesis , Fungal Proteins/chemistry , Lipase/chemistry , Biocatalysis , Esters/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...