Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Braz J Microbiol ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951478

ABSTRACT

Chitinases are promising enzymes for a multitude of applications, including chitooligosaccharide (COS) synthesis for food and pharmaceutical uses and marine waste management. Owing to fungal diversity, fungal chitinases may offer alternatives for chitin degradation and industrial applications. The rapid reproduction cycle, inexpensive growth media, and ease of handling of fungi may also contribute to reducing enzyme production costs. Thus, this study aimed to identify fungal species with chitinolytic potential and optimize chitinase production by submerged culture and enzyme characterization using shrimp chitin. Three fungal species, Coriolopsis byrsina, Trichoderma reesei, and Trichoderma harzianum, were selected for chitinase production. The highest endochitinase production was achieved in C. byrsina after 168 h cultivation (0.3 U mL- 1). The optimal temperature for enzyme activity was similar for the three fungal species (up to 45 and 55 ºC for endochitinases and exochitinases, respectively). The effect of pH on activity indicated maximum hydrolysis in acidic pH (4-7). In addition, the crude T. reesei extract showed promising properties for removing Candida albicans biofilms. This study showed the possibility of using shrimp chitin to induce chitinase production and enzymes that can be applied in different industrial sectors.

2.
3 Biotech ; 13(6): 202, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37220603

ABSTRACT

The increase in the generation of chicken feathers, due to the large production of the poultry industry, has created the need to search for ecologically safer ways to manage these residues. As a sustainable alternative for recycling keratin waste, we investigated the ability of the bacterium Ochrobactrum intermedium to hydrolyze chicken feathers and the valorization of the resulting enzymes and protein hydrolysate. In submerged fermentation with three different inoculum sizes (2.5, 5.0, and 10.0 mg of bacterial cells per 50 mL of medium), the fastest degradation of feathers was achieved with 5.0 mg cells, in which a complete decomposition of the substrate (96 h) and earlier peaks of keratinolytic and caseinolytic activities were detected. In the resulting protein hydrolysate, we noticed antioxidant and Fe2+ and Cu2+ chelating activities. ABTS scavenging, Fe3+-reducing ability and metal chelating activities of the fermentative samples followed the same trend of feather degradation; as feather mass decreased in the media, these activities increased. Furthermore, we noticed about 47% and 60% dispersion of established 7-day biofilms formed by S. aureus after enzymatic treatment for 5 h and 24 h, respectively. These findings highlight the potential use of this bacterium as an environmentally friendly alternative to treat this poultry waste and offer valuable products.

3.
World J Microbiol Biotechnol ; 37(5): 86, 2021 Apr 17.
Article in English | MEDLINE | ID: mdl-33864165

ABSTRACT

Keratinases are proteolytic enzymes with a particular ability to cleave peptide bonds in keratin, and in other proteins. Due to their broad-spectrum of activity, keratinases are considered viable substitutes for chemical and thermal treatments of protein-rich industrial by-products. Among these protein residues, special attention has been given to keratinous materials (feathers, hair, horns, etc.), which disposal through harsh conditions methods, such as acid/alkaline hydrolysis or incineration, is not considered ecologically safe. Microbial keratinolytic enzymes allow for keratin degradation under mild conditions, resulting in keratin hydrolysates containing undamaged amino acids and peptides. In this review article, we offer perspectives on the relevance of these unique biocatalysts and their revolutionary ascent in industries that generate keratin-rich wastes. Additionally, we share insights for applications of keratinases and protein hydrolysates in agriculture, animal feed, cosmetics, phamaceuticals, detergent additives, leather processing, and others. Due to the scientific importance of keratinases and their potential use in green technologies, searching for bacterial and fungal species that efficiently produce these enzymes may contribute to the sustainability of industries.


Subject(s)
Keratins/chemistry , Peptide Hydrolases/metabolism , Biocatalysis , Industrial Waste/analysis , Peptide Hydrolases/genetics , Protein Engineering , Proteolysis
4.
Biotechnol Lett ; 42(11): 2403-2412, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32642979

ABSTRACT

OBJECTIVES: Keratinases are proteolytic enzymes that emerge as an alternative for dealing with the disposal of chicken feathers. In this study, we aimed to investigate the keratin-degrading enzymes secreted by the fungus Coriolopsis byrsina and their partial biochemical characterization to adapt their use for keratin decomposition, detergent additive applications, and collagen degradation. RESULTS: We observed the secretion of different proteolytic enzymes that possessed caseinolytic activity that peaked at pH 7.0-9.0 and 60-70 °C and at pH 10.5 and 55-60 °C, and keratinolytic activity that reached a maximum at pH 7.0-7.5 and 40-55 ºC and at pH 9.0 and 55 °C. Keratinolytic activity was maintained at approximately 63% of residual activity for 1 h at 50 °C. The caseinolytic activity at pH 10.5 remains stable until 1 h at 50 °C, and this is in contrast to the activity at pH 8.5, where the residual activity was 50%. Caseinolytic activity was inhibited only by PMSF, while keratinolytic activity was inhibited by PMSF and EDTA. When investigating the application of C. byrsina peptidases as an additive to commercial detergent, we observed an egg stain removal performance that was similar to that demonstrated by the commercial detergent. CONCLUSIONS: Based on their activity and stability at alkaline pH, these enzymes appear to be attractive candidates for use in the detergent industry. Additionally, the collagenolytic activity of these enzymes potentially allows for their use in a wide array of industrial sectors that require collagenolytic enzymes, such as for the production of collagen hydrolysates from residues derived from the meat industry.


Subject(s)
Feathers/chemistry , Peptide Hydrolases/chemistry , Peptide Hydrolases/metabolism , Polyporaceae/growth & development , Animals , Batch Cell Culture Techniques , Caseins/chemistry , Enzyme Stability , Fermentation , Fungal Proteins/metabolism , Hot Temperature , Hydrogen-Ion Concentration , Polyporaceae/enzymology , Textiles
5.
Braz J Microbiol ; 51(3): 969-977, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32291739

ABSTRACT

Currently, poultry farming is one of the sectors that have a significant impact on the global economy. In recent years, there has been an increase in the production of broilers, inflicting this segment of the industry to generate tons of keratin due to huge disposal of chicken feathers. This points to the need to degrade these chicken feathers, as they have emerged as a major threat to the environment. Thus, in this study we aimed to identify keratinases that are produced by the bacterium Citrobacter diversus and further investigate the biochemical characteristics of these keratin-degrading enzymes. In a submerged medium, the bacterium was capable of degrading chicken feathers almost completely after 36 h of fermentation. We found a maximum caseinolytic activity at pH 9-10.5 and 50-55 °C, and keratinolytic activity at pH 8.5-9.5 and 50 °C. Thus, given its stability at higher temperatures, upon incubation of this enzyme extract for 1 h at 50 °C, it showed approximately 50% of the keratinolytic and 100% of the caseinolytic activity. Further, under pH stability for 48 h at 4 °C, the enzyme extract maintained greater residual activity in the pH range 6-8. Caseinolytic activity was inhibited by EDTA and PMSF, whereas the keratinolytic activity was inhibited only by EDTA. Additionally, due to its alkaline activity and detergent compatibility, this enzyme extract could improve washing performance when added to a commercial detergent formulation. Using application tests, we could demonstrate a potential use of this bacterial enzyme extract as an additive in detergents to remove egg stains from cloth.


Subject(s)
Bacterial Proteins/metabolism , Citrobacter koseri/enzymology , Detergents/metabolism , Peptide Hydrolases/metabolism , Animals , Bacterial Proteins/isolation & purification , Biodegradation, Environmental , Caseins/metabolism , Chickens , Citrobacter koseri/metabolism , Culture Media/metabolism , Detergents/chemistry , Feathers/metabolism , Fermentation , Hydrogen-Ion Concentration , Keratins/metabolism , Peptide Hydrolases/isolation & purification , Temperature
6.
J Biotechnol ; 294: 73-80, 2019 Mar 20.
Article in English | MEDLINE | ID: mdl-30796944

ABSTRACT

ß-glucosidases are glycoside hydrolases that-particularly those from filamentous fungi-have been extensively explored in cellulose fiber saccharification and wine quality improvement. However, these enzymes from yeast have been poorly studied. In this study, an ethanol-glucose tolerant ß-glucosidase that is secreted by Pichia guilliermondii (current name Meyerozyma guilliermondii) was purified and characterized. This enzyme exhibited an estimated molecular mass of 97 kDa and the highest activity between pH 3.5-5.5 and 55 °C. The ß-glucosidase was also tolerant to acetone, ethanol, isopropanol, and methanol up to 30% and glucose at 1 M. It was also stable up to 55 °C for 80 min, maintaining 70% of its initial activity and in a wide pH range (pH 3-10). The enzyme exhibited 90-100% of its initial activity for 72 h at 20, 25, and 30 °C in presence of 10% ethanol at pH 3.5, which is a similar condition to winemaking. Studies that identify new enzymes and describe their purification are required for oenology applications. The ß-glucosidase described herein is a promising candidate for use in the preparation of wine. Additionally, its tolerance to glucose is an important biochemical property that adds value to this enzyme and enables it to be used during the final saccharification process.


Subject(s)
Pichia/enzymology , beta-Glucosidase , Cellulose/chemistry , Ethanol/chemistry , Glucose/chemistry , Hydrogen-Ion Concentration , Hydrolysis , Temperature , Wine , beta-Glucosidase/antagonists & inhibitors , beta-Glucosidase/chemistry , beta-Glucosidase/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...