Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 28(19)2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37836747

ABSTRACT

The accumulated dental biofilm can be a source of oral bacteria that are aspirated into the lower respiratory tract causing ventilator-associated pneumonia in hospitalized patients. The aim of this study was to evaluate the synergistic antibiofilm action of the produced and phytochemically characterized extracts of Cinnamomum verum and Brazilian green propolis (BGP) hydroethanolic extracts against multidrug-resistant clinical strains of Acinetobacter baumannii and Pseudomonas aeruginosa, in addition to their biocompatibility on human keratinocyte cell lines (HaCaT). For this, High-performance liquid chromatography analysis of the plant extracts was performed; then the minimum inhibitory and minimum bactericidal concentrations of the extracts were determined; and antibiofilm activity was evaluated with MTT assay to prevent biofilm formation and to reduce the mature biofilms. The cytotoxicity of the extracts was verified using the MTT colorimetric test, evaluating the cellular enzymatic activity. The data were analyzed with one-way ANOVA and Tukey's tests as well as Kruskal-Wallis and Dunn's tests, considering a significance level of 5%. It was possible to identify the cinnamic aldehyde in C. verum and p-coumaric, caffeic, and caffeoylquinic acids as well as flavonoids such as kaempferol and kaempferide and Artepillin-C in BGP. The combined extracts were effective in preventing biofilm formation and reducing the mature biofilms of A. baumannii and P. aeruginosa. Moreover, both extracts were biocompatible in different concentrations. Therefore, C. verum and BGP hydroethanolic extracts have bactericidal and antibiofilm action against multidrug resistant strains of A. baumannii and P. aeruginosa. In addition, the combined extracts were capable of expressively inhibiting the formation of A. baumannii and P. aeruginosa biofilms (prophylactic effect) acting similarly to 0.12% chlorhexidine gluconate.


Subject(s)
Acinetobacter baumannii , Propolis , Humans , Pseudomonas aeruginosa , Propolis/pharmacology , Cinnamomum zeylanicum , Brazil , Drug Resistance, Multiple, Bacterial , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Biofilms , Keratinocytes
2.
Pathog Dis ; 79(2)2021 02 19.
Article in English | MEDLINE | ID: mdl-33417701

ABSTRACT

Cryptococcus neoformans is a yeast that mainly affects immunocompromised individuals and causes meningoencephalitis depending on the immune status of the host. The present study aimed to validate the efficacy of selective serotonin reuptake inhibitors, fluoxetine hydrochloride (FLH) and paroxetine hydrochloride (PAH), alone and in combination with amphotericin B (AmB) against C. neoformans. Susceptibility tests were conducted using the broth microdilution method and synergistic effects of combining FLH and PAH with AmB were analyzed using the checkerboard assay. Effects of minimum inhibitory concentration (MIC) and synergistic concentration were evaluated in biofilms by quantifying the biomass, measuring the viability by counting the colony-forming units (CFU/mL) and examining the size of the induced capsules. Cryptococcus neoformans was susceptible to FLH and PAH and the synergistic effect of FLH and PAH in combination with AmB reduced the MIC of AmB by up to 8-fold. The isolated substances and combination with AmB were able to reduce biofilm biomass and biofilm viability. In addition, FLH and PAH alone or in combination with AmB significantly decreased the size of the yeast capsules. Collectively, our results indicate the use of FLH and PAH as a promising prototype for the development of anti-cryptococcal drugs.


Subject(s)
Amphotericin B/pharmacology , Biofilms/drug effects , Cryptococcus neoformans/drug effects , Drug Synergism , Fluoxetine/pharmacology , Paroxetine/pharmacology , Antifungal Agents/pharmacology , Cryptococcosis/drug therapy , Drug Therapy, Combination , Humans , Meningoencephalitis/drug therapy , Microbial Sensitivity Tests , Microbial Viability , Selective Serotonin Reuptake Inhibitors/pharmacology
3.
J Fungi (Basel) ; 4(4)2018 Nov 27.
Article in English | MEDLINE | ID: mdl-30486393

ABSTRACT

The use of invertebrates for in vivo studies in microbiology is well established in the scientific community. Larvae of Galleria mellonella are a widely used model for studying pathogenesis, the efficacy of new antimicrobial compounds, and immune responses. The immune system of G. mellonella larvae is structurally and functionally similar to the innate immune response of mammals, which makes this model suitable for such studies. In this review, cellular responses (hemocytes activity: phagocytosis, nodulation, and encapsulation) and humoral responses (reactions or soluble molecules released in the hemolymph as antimicrobial peptides, melanization, clotting, free radical production, and primary immunization) are discussed, highlighting the use of G. mellonella as a model of immune response to different human pathogenic microorganisms.

SELECTION OF CITATIONS
SEARCH DETAIL
...