Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Immunol ; 234: 108913, 2022 01.
Article in English | MEDLINE | ID: mdl-34954347

ABSTRACT

Chagas disease has a complex pathogenesis wherein the host immune response is essential for controlling its development. Suppressor of cytokine signaling(SOCS)2 is a crucial protein that regulates cytokine production. In this study, SOCS2 deficiency resulted in an initial imbalance of IL12- and IL-10-producing neutrophils and dendritic cells (DCs), which caused a long-lasting impact reducing inflammatory neutrophils and DCs, and tolerogenic DCs at the peak of acute disease. A reduced number of inflammatory and pro-resolving macrophages, and IL17A-producing CD4+ T cells, and increased lymphocyte apoptosis was found in SOCS2-deficient mice. Electrocardiogram analysis of chimeric mice showed that WT mice that received SOCS2 KO bone marrow transplantation presented increased heart dysfunction. Taken together, the results demonstrated that SOCS2 is a crucial regulator of the immune response during Trypanosoma cruzi infection, and suggest that a SOCS2 genetic polymorphism, or failure of its expression, may increase the susceptibility of cardiomyopathy development in Chagasic patients.


Subject(s)
Cardiomyopathies/etiology , Chagas Disease/immunology , Dendritic Cells/immunology , Neutrophils/immunology , Suppressor of Cytokine Signaling Proteins/physiology , Animals , Bone Marrow Transplantation , Chagas Disease/complications , Female , Mice , Mice, Inbred C57BL , Spleen/immunology , Suppressor of Cytokine Signaling Proteins/genetics , Th17 Cells/immunology
2.
Article in English | MEDLINE | ID: mdl-30984275

ABSTRACT

Nerol (C10H18O) is a monoterpene found in many essential oils, such as lemon balm and hop. In this study, we explored the contractile and electrophysiological properties of nerol and demonstrated its antiarrhythmic effects in guinea pig heart preparation. Nerol effects were evaluated on atrial and ventricular tissue contractility, electrocardiogram (ECG), voltage-dependent L-type Ca2+ current (ICa,L), and ouabain-triggered arrhythmias. Overall our results revealed that by increasing concentrations of nerol (from 0.001 to 30 mM) there was a significant decrease in left atrium contractile force. This effect was completely and rapidly reversible after washing out (~ 2 min). Nerol (at 3 mM concentration) decreased the left atrium positive inotropic response evoked by adding up CaCl2 in the extracellular medium. Interestingly, when using a lower concentration of nerol (30 µM), it was not possible to clearly observe any significant ECG signal alterations but a small reduction of ventricular contractility was observed. In addition, 300 µM nerol promoted a significant decrease on the cardiac rate and contractility. Important to note is the fact that in isolated cardiomyocytes, peak ICa,L was reduced by 58.9 ± 6.31% after perfusing 300 µM nerol (n=7, p<0.05). Nerol, at 30 and 300 µM, delayed the time of onset of ouabain-triggered arrhythmias and provoked a decrease in the diastolic tension induced by the presence of ouabain (50 µM). Furthermore, nerol preincubation significantly attenuated arrhythmia severity index without changes in the positive inotropism elicited by ouabain exposure. Taken all together, we may be able to conclude that nerol primarily by reducing Ca2+ influx through L-type Ca2+ channel blockade lessened the severity of ouabain-triggered arrhythmias in mammalian heart.

3.
Basic Clin Pharmacol Toxicol ; 115(6): 534-44, 2014 Dec.
Article in English | MEDLINE | ID: mdl-24862086

ABSTRACT

Geraniol is a monoterpene present in several essential oils, and it is known to have a plethora of pharmacological activities. In this study, we explored the contractile and electrophysiological properties of geraniol and its antiarrhythmic effects in the heart. The geraniol effects on atrial contractility, L-type Ca(2+) current, K(+) currents, action potential (AP) parameters, ECG profile and on the arrhythmia induced by ouabain were evaluated. In the atrium, geraniol reduced the contractile force (~98%, EC = 1,510 ± 160 µM) and diminished the positive inotropism of CaCl2 and BAY K8644. In cardiomyocytes, the IC a,L was reduced by 50.7% (n = 5) after perfusion with 300 µM geraniol. Moreover, geraniol prolonged the AP duration (APD) measured at 50% (n = 5) after repolarization, without changing the resting potential. The increased APD could be attributed to the blockade of the transient outward K(+) current (Ito ) (59.7%, n = 4), the non-inactivation K(+) current (Iss ) (39.2%, n = 4) and the inward rectifier K(+) current (IK 1 ) (33.7%, n = 4). In isolated hearts, geraniol increased PRi and QTi without affecting the QRS complex (n = 6), and it reduced both the left ventricular pressure (83%) and heart rate (16.5%). Geraniol delayed the time to onset of ouabain-induced arrhythmias by 128%, preventing 30% of the increase in resting tension (n = 6). Geraniol exerts its negative inotropic and chronotropic responses in the heart by decreasing both L-type Ca(2+) and voltage-gated K(+) currents, ultimately acting against ouabain-induced arrhythmias.


Subject(s)
Anti-Arrhythmia Agents/pharmacology , Arrhythmias, Cardiac/drug therapy , Calcium Channel Blockers/pharmacology , Heart/drug effects , Potassium Channel Blockers/pharmacology , Terpenes/pharmacology , Acyclic Monoterpenes , Animals , Anti-Arrhythmia Agents/therapeutic use , Calcium Channel Blockers/therapeutic use , Calcium Channels , Electrocardiography/drug effects , Guinea Pigs , Heart Atria/drug effects , Male , Mice, Inbred C57BL , Myocardial Contraction/drug effects , Potassium Channel Blockers/therapeutic use , Terpenes/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...