Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Fish Biol ; 103(5): 939-949, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37395556

ABSTRACT

Predation is a major evolutionary force determining life-history traits in prey by direct and indirect mechanisms. This study focuses on life-history trait variation in crucian carp (Carassius carassius), a species well known for developing a deep body as an inducible morphological defence against predation risk. Here, the authors tested variation in growth and reproductive traits in 15 crucian carp populations in lakes along a predation risk gradient represented by increasingly efficient predator communities. Lakes were located in south-eastern Norway and were sampled in summer 2018 and 2019. The authors expected crucian carp to attain higher growth rate, larger size, and later age at maturity with increasing predation risk. In the absence of predators, they expected high adult mortality, early maturity and increased reproductive effort caused by strong intraspecific competition. They found that the life-history traits of crucian carp were clearly related to the presence of piscivores: with increasing predation risk, fish grew in body length and depth and attained larger asymptotic length and size at maturity. This growth was evident at young age, especially in productive lakes with pike, and it suggests that fish quickly outgrew the predation window by reaching a size refuge. Contrary to the authors' predictions, populations had similar age at maturity. High-predation lakes also presented low density of crucian carp. This suggests that fish from predator lakes may experience high levels of resource availability due to reduced intraspecific competition. Predation regulated life-history traits in crucian carp populations, where larger size, higher longevity and size at maturity were observed in lakes with large gaped predators.


Subject(s)
Carps , Life History Traits , Animals , Predatory Behavior , Lakes , Esocidae
2.
Ecol Evol ; 11(5): 2072-2085, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33717443

ABSTRACT

Phenotypic plasticity can be expressed as changes in body shape in response to environmental variability. Crucian carp (Carassius carassius), a widespread cyprinid, displays remarkable plasticity in body morphology and increases body depth when exposed to cues from predators, suggesting the triggering of an antipredator defense mechanism. However, these morphological changes could also be related to resource use and foraging behavior, as an indirect effect of predator presence. In order to determine whether phenotypic plasticity in crucian carp is driven by a direct or indirect response to predation threat, we compared twelve fish communities inhabiting small lakes in southeast Norway grouped by four categories of predation regimes: no predator fish, or brown trout (Salmo trutta), perch (Perca fluviatilis), or pike (Esox lucius) as main piscivores. We predicted the body shape of crucian carp to be associated with the species composition of predator communities and that the presence of efficient piscivores would result in a deeper body shape. We use stable isotope analyses to test whether this variation in body shape was related to a shift in individual resource use-that is, littoral rather than pelagic resource use would favor the development of a specific body shape-or other environmental characteristics. The results showed that increasingly efficient predator communities induced progressively deeper body shape, larger body size, and lower population densities. Predator maximum gape size and individual trophic position were the best variables explaining crucian carp variation in body depth among predation categories, while littoral resource use did not have a clear effect. The gradient in predation pressure also corresponded to a shift in lake productivity. These results indicate that crucian carp have a fine-tuned morphological defense mechanism against predation risk, triggered by the combined effect of predator presence and resource availability.

SELECTION OF CITATIONS
SEARCH DETAIL
...