Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 10407, 2021 May 17.
Article in English | MEDLINE | ID: mdl-34001976

ABSTRACT

Sea-level rise of the Caspian Sea (CS) during the early Khvalynian (approximately 40-25 ka BP) generated hundreds of giant landslides along the sea's ancient coastlines in western Kazakhstan, which extended hundreds of kilometers. Although similar landslides have been observed along the present-day coastlines of the CS in the area of a prominent high escarpment, it remains unclear whether some of these ancient landslides are still active and whether the movement is slow or catastrophic, as previously suggested. The present study is the first to show evidence proving that the geomorphic responses to sea-level changes of the CS that were triggered in the Pleistocene are currently active. Using interferometric synthetic aperture radar (InSAR) data, we show that one of these giant landslides occurring along the western shore of the Kara-Bogaz-Gol (KBG) lagoon of the CS presents active transient motion, which makes it the world's largest active landslide reported thus far. Extending more than 25 km along the eastern coast of the inundated KBG depression in a N-S direction with maximum landward expansion of 5 km from the shoreline to the flat Ustyurt Plateau, this landslide conveys ~ 10 × 109 m3 rocks toward the lagoon at a rate of ~ 2.5 cm/year. This event releases a nearly episodic aseismic moment of 6.0 × 1010 Nm annually, which is equivalent to the response of an Mw 5.1 earthquake. We analyze the present-day evolution of this giant coastal landslide at high temporal and spatial resolutions using Sentinel-1 radar images acquired on descending and ascending modes every 12 days between 2014 and 2020. Modelling with elastic dislocations suggests that the KBG landslide was accommodated mostly by a shallow basal décollement with a nearly horizontal listric slip plane. Moreover, our analysis reveals week-long accelerating slip events at changing amplitudes that occur seasonally with slow, lateral spreading rather than sudden catastrophic motion. A strong correlation between the episodic slip events and seasonal water-level changes in the KBG lagoon suggests a causative mechanism for the transient accelerating slip events. Although water-level changes are widely acknowledged to trigger transient motion on a land mass, such movement, which is similar to a silent earthquake, has not been observed thus far at this mega scale; on an extremely low-angle detachment planes at < 5° with modulation by sea-level changes. This study suggests that present-day sea-level changes can reactivate giant landslides that originated 40-25 ka.

2.
Sci Rep ; 10(1): 12743, 2020 Jul 24.
Article in English | MEDLINE | ID: mdl-32704086

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

3.
Sci Rep ; 10(1): 9103, 2020 Jun 04.
Article in English | MEDLINE | ID: mdl-32499496

ABSTRACT

The main active tectonic structure in the western part of Central Sulawesi (Indonesia) is the left-lateral Palu-Koro strike-slip fault. Its offshore section was thought not to have broken during the Mw 7.5 Palu Earthquake on 28 September 2018, challenging the established knowledge of the tectonic setting at this location. Here, we use Sentinel-1 SAR interferometry to produce a map of the ground velocities in the area of the Mw 7.5 earthquake for the seven months following the 2018 earthquake. We show evidence of surface deformation along the western coast of the Palu bay, indicating that the Palu Koro offshore fault section might have contribute to or been affected by the earthquake. As the possibility of multi-segment ruptures is a high concern in the area because of the high seismic and tsunami hazard, we present here, a fault model that includes the offshore section of the Palu-Koro fault. Thanks to four independents space-based geodetics measurements of the co-seismic displacement (Sentinel-1 and Sentinel-2 correlograms) we constrain the 3D co-seismic ground displacements. The modeling of these displacements allows us to estimate the co-seismic fault slip amplitude and geometry at depth. At the end, we consider the multi-segment faulting scenario, including the offshore section of the Palu-Koro fault, as a plausible model to explain the submarine landslides and the tsunamis. This study also gives the opportunity to observe a super-shear earthquake in the context of a complex fault network and implies an increase in the probability of submarine landslides within the bay in the forthcoming years.

4.
Sci Rep ; 8(1): 6032, 2018 Apr 16.
Article in English | MEDLINE | ID: mdl-29662122

ABSTRACT

This study focuses on the shallow deformation that occurred during the 5 years following the Parkfield earthquake (28/09/2004, Mw 6, San Andreas Fault, California). We use Synthetic Aperture Radar interferometry (InSAR) to provide precise measurements of transient deformations after the Parkfield earthquake between 2005 and 2010. We propose a method to combine both ERS2 and ENVISAT interferograms to increase the temporal data sampling. Firstly, we combine 5 years of available Synthetic Aperture Radar (SAR) acquisitions including both ERS-2 and Envisat. Secondly, we stack selected interferograms (both from ERS2 and Envisat) for measuring the temporal evolution of the ground velocities at given time intervals. Thanks to its high spatial resolution, InSAR could provide new insights on the surface fault motion behavior over the 5 years following the Parkfield earthquake. As a complement to previous studies in this area, our results suggest that shallow transient deformations affected the Creeping-Parkfield-Cholame sections of the San Andreas Fault after the 2004 Mw6 Parkfield earthquake.

5.
PLoS One ; 12(9): e0185422, 2017.
Article in English | MEDLINE | ID: mdl-28961264

ABSTRACT

We utilize L-band interferometric synthetic aperture radar (InSAR) data in this study to retrieve a ground velocity map for the near field of the Ganos section of the north Anatolian fault (NAF) zone. The segmentation and creep distribution of this section, which last ruptured in 1912 to generate a moment magnitude (Mw)7.3 earthquake, remains incompletely understood. Because InSAR processing removes the mean orbital plane, we do not investigate large scale displacements due to regional tectonics in this study as these can be determined using global positioning system (GPS) data, instead concentrating on the close-to-the-fault displacement field. Our aim is to determine whether, or not, it is possible to retrieve robust near field velocity maps from stacking L-band interferograms, combining both single and dual polarization SAR data. In addition, we discuss whether a crustal velocity map can be used to complement GPS observations in an attempt to discriminate the present-day surface displacement of the Ganos fault (GF) across multiple segments. Finally, we characterize the spatial distribution of creep on shallow patches along multiple along-strike segments at shallow depths. Our results suggest the presence of fault segmentation along strike as well as creep on the shallow part of the fault (i.e. the existence of a shallow creeping patch) or the presence of a smoother section on the fault plane. Data imply a heterogeneous fault plane with more complex mechanics than previously thought. Because this study improves our knowledge of the mechanisms underlying the GF, our results have implications for local seismic hazard assessment.


Subject(s)
Earthquakes , Interferometry/methods , Radar , Turkey
SELECTION OF CITATIONS
SEARCH DETAIL
...