Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Planta ; 223(4): 847-57, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16211389

ABSTRACT

The promotion of germination by phytochrome is associated with extensive changes both in the embryo and in the micropylar region of the endosperm (ME) of Datura ferox seeds. These changes require de novo gibberellins (GAs) biosynthesis in the embryo, the site where the light stimulus is perceived. GAs stimulate embryo growth potential and move to ME, promoting the expression of genes related with weakening. We report here that, in addition, phytochrome stimulates the sensitivity of the seeds to gibberellic acid (GA). The phytochrome-induced signal is produced in the embryo and enhances the stimulus by GA of embryo growth potential (EGP) and the promotion of the expression of proteins thought to participate in ME weakening: endo-beta-mannanase (EC 3.2.1.78), endo-beta-mannosidase (EC 3.2.1.25) and expansin. Our results suggest that the cytokinins may be a component of the embryonic signal. Phytochrome also modulates DfPHOR and DfMYB transcript levels in ME. These genes show a high identity with components of GAs signaling identified in other species. Expression of DfPHOR in the ME is apparently regulated by phytochrome through the supply of GAs from the embryo to ME, whereas DfMYB expression is regulated by an embryonic factor with some of the characteristics of the one that modulates seed sensitivity to GAs.


Subject(s)
Datura/embryology , Gibberellins/metabolism , Phytochrome/metabolism , Seeds/metabolism , Gene Expression Regulation, Plant/radiation effects , Germination/drug effects , Germination/physiology , Germination/radiation effects , Gibberellins/pharmacology , Light , Plant Proteins/genetics , Plant Proteins/metabolism , Seeds/drug effects , Seeds/radiation effects , Zeatin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...