Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 21(2): 1512-9, 2013 Jan 28.
Article in English | MEDLINE | ID: mdl-23389133

ABSTRACT

The phenomenon called Electromagnetically Induced Transparency (EIT) may induce different types of correlation between two optical fields interacting with an ensemble of atoms. It is presently well known, for example, that in the vicinity of an EIT resonance the dominant correlations at low powers turn into anti-correlations as power increases. Such correlation spectra present striking power-broadening-independent features, with the best condition for measuring the characteristic linewidth occurring at the highest powers. In the present work we investigate the physical mechanisms responsible for this set of observations. Our approach is first to reproduce these effects in a better controlled experimental setup: a cold atomic ensemble, obtained from a magneto-optical trap. The results from this conceptually simpler system were then compared to a correspondingly simpler theory, which clearly relates the observed features to the interplay between two key aspects of EIT: the transparency itself and the steep normal dispersion near two-photon resonance.


Subject(s)
Electromagnetic Fields , Models, Theoretical , Scattering, Radiation , Spectrum Analysis/methods , Computer Simulation , Statistics as Topic
2.
Nature ; 464(7293): 1324-8, 2010 Apr 29.
Article in English | MEDLINE | ID: mdl-20428166

ABSTRACT

Ultracold polar molecules offer the possibility of exploring quantum gases with interparticle interactions that are strong, long-range and spatially anisotropic. This is in stark contrast to the much studied dilute gases of ultracold atoms, which have isotropic and extremely short-range (or 'contact') interactions. Furthermore, the large electric dipole moment of polar molecules can be tuned using an external electric field; this has a range of applications such as the control of ultracold chemical reactions, the design of a platform for quantum information processing and the realization of novel quantum many-body systems. Despite intense experimental efforts aimed at observing the influence of dipoles on ultracold molecules, only recently have sufficiently high densities been achieved. Here we report the experimental observation of dipolar collisions in an ultracold molecular gas prepared close to quantum degeneracy. For modest values of an applied electric field, we observe a pronounced increase in the loss rate of fermionic potassium-rubidium molecules due to ultracold chemical reactions. We find that the loss rate has a steep power-law dependence on the induced electric dipole moment, and we show that this dependence can be understood in a relatively simple model based on quantum threshold laws for the scattering of fermionic polar molecules. In addition, we directly observe the spatial anisotropy of the dipolar interaction through measurements of the thermodynamics of the dipolar gas. These results demonstrate how the long-range dipolar interaction can be used for electric-field control of chemical reaction rates in an ultracold gas of polar molecules. Furthermore, the large loss rates in an applied electric field suggest that creating a long-lived ensemble of ultracold polar molecules may require confinement in a two-dimensional trap geometry to suppress the influence of the attractive, 'head-to-tail', dipolar interactions.

3.
Phys Rev Lett ; 104(3): 030402, 2010 Jan 22.
Article in English | MEDLINE | ID: mdl-20366634

ABSTRACT

We report the preparation of a rovibronic ground-state molecular quantum gas in a single hyperfine state and, in particular, the absolute lowest quantum state. This addresses the last internal degree of freedom remaining after the recent production of a near quantum degenerate gas of molecules in their rovibronic ground state, and provides a crucial step towards full control over molecular quantum gases. We demonstrate a scheme that is general for bialkali polar molecules and allows the preparation of molecules in a single hyperfine state or in an arbitrary coherent superposition of hyperfine states. The scheme relies on electric-dipole, two-photon microwave transitions through rotationally excited states and makes use of electric nuclear quadrupole interactions to transfer molecular population between different hyperfine states.

4.
Science ; 327(5967): 853-7, 2010 Feb 12.
Article in English | MEDLINE | ID: mdl-20150499

ABSTRACT

How does a chemical reaction proceed at ultralow temperatures? Can simple quantum mechanical rules such as quantum statistics, single partial-wave scattering, and quantum threshold laws provide a clear understanding of the molecular reactivity under a vanishing collision energy? Starting with an optically trapped near-quantum-degenerate gas of polar 40K87Rb molecules prepared in their absolute ground state, we report experimental evidence for exothermic atom-exchange chemical reactions. When these fermionic molecules were prepared in a single quantum state at a temperature of a few hundred nanokelvin, we observed p-wave-dominated quantum threshold collisions arising from tunneling through an angular momentum barrier followed by a short-range chemical reaction with a probability near unity. When these molecules were prepared in two different internal states or when molecules and atoms were brought together, the reaction rates were enhanced by a factor of 10 to 100 as a result of s-wave scattering, which does not have a centrifugal barrier. The measured rates agree with predicted universal loss rates related to the two-body van der Waals length.

5.
Faraday Discuss ; 142: 351-9; discussion 429-61, 2009.
Article in English | MEDLINE | ID: mdl-20151553

ABSTRACT

We report the creation and characterization of a near quantum-degenerate gas of polar 40K-87Rb molecules in their absolute rovibrational ground state. Starting from weakly bound heteronuclear KRb Feshbach molecules, we implement precise control of the molecular electronic, vibrational, and rotational degrees of freedom with phase-coherent laser fields. In particular, we coherently transfer these weakly bound molecules across a 125 THz frequency gap in a single step into the absolute rovibrational ground state of the electronic ground potential. Phase coherence between lasers involved in the transfer process is ensured by referencing the lasers to two single components of a phase-stabilized optical frequency comb. Using these methods, we prepare a dense gas of 4 x 10(4) polar molecules at a temperature below 400 nK. This fermionic molecular ensemble is close to quantum degeneracy and can be characterized by a degeneracy parameter of T/T(F) = 3. We have measured the molecular polarizability in an optical dipole trap where the trap lifetime gives clues to interesting decay mechanisms. Given the large measured dipole moment of the KRb molecules of 0.5 Debye, the study of quantum degenerate molecular gases interacting via strong dipolar interactions is now within experimental reach. PACS numbers: 37.10.Mn, 37.10.Pq.

6.
Science ; 322(5899): 231-5, 2008 Oct 10.
Article in English | MEDLINE | ID: mdl-18801969

ABSTRACT

A quantum gas of ultracold polar molecules, with long-range and anisotropic interactions, not only would enable explorations of a large class of many-body physics phenomena but also could be used for quantum information processing. We report on the creation of an ultracold dense gas of potassium-rubidium (40K87Rb) polar molecules. Using a single step of STIRAP (stimulated Raman adiabatic passage) with two-frequency laser irradiation, we coherently transfer extremely weakly bound KRb molecules to the rovibrational ground state of either the triplet or the singlet electronic ground molecular potential. The polar molecular gas has a peak density of 10(12) per cubic centimeter and an expansion-determined translational temperature of 350 nanokelvin. The polar molecules have a permanent electric dipole moment, which we measure with Stark spectroscopy to be 0.052(2) Debye (1 Debye = 3.336 x 10(-30) coulomb-meters) for the triplet rovibrational ground state and 0.566(17) Debye for the singlet rovibrational ground state.

7.
Science ; 319(5871): 1805-8, 2008 Mar 28.
Article in English | MEDLINE | ID: mdl-18276849

ABSTRACT

Optical atomic clocks promise timekeeping at the highest precision and accuracy, owing to their high operating frequencies. Rigorous evaluations of these clocks require direct comparisons between them. We have realized a high-performance remote comparison of optical clocks over kilometer-scale urban distances, a key step for development, dissemination, and application of these optical standards. Through this remote comparison and a proper design of lattice-confined neutral atoms for clock operation, we evaluate the uncertainty of a strontium (Sr) optical lattice clock at the 1 x 10(-16) fractional level, surpassing the current best evaluations of cesium (Cs) primary standards. We also report on the observation of density-dependent effects in the spin-polarized fermionic sample and discuss the current limiting effect of blackbody radiation-induced frequency shifts.

SELECTION OF CITATIONS
SEARCH DETAIL
...