Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Genes Brain Behav ; 12(6): 653-7, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23777486

ABSTRACT

Interspecies genetic analysis of neurobehavioral traits is critical for identifying neurobiological mechanisms underlying psychiatric disorders, and for developing models for translational research. Recently, after screening a chromosome substitution strain panel in an automated home cage environment, chromosomes 15 and 19 were identified in female mice for carrying genetic loci that contribute to increased avoidance behavior (sheltering preference). Furthermore, we showed that the quantitative trait locus (QTL) for baseline avoidance behavior on chromosome 15 is homologous with a human linkage region for bipolar disorder (8q24). Similarly, we now performed comparative analysis on the QTL for avoidance behavior found on chromosome 19 and correspondingly revealed an overlap of the mouse interval and human homologous region 10q23-24, which has been previously linked to bipolar disorders. By means of a comparative genetic strategy within the human homologous region, we describe an association for TLL2 with bipolar disorder using the genome-wide association study (GWAS) data set generated by the Wellcome Trust Case Control Consortium (WTCCC). On the basis of genetic homology and mood stabilizer sensitivity, our data indicate the intriguing possibility that mouse home cage avoidance behavior may translate to a common biochemical mechanisms underlying bipolar disorder susceptibility. These findings pave new roads for the identification of the molecular mechanisms and novel treatment possibilities for this psychiatric disorder, as well as for the validity of translational research of associated psychiatric endophenotypes.


Subject(s)
Bipolar Disorder/genetics , Escape Reaction , Tolloid-Like Metalloproteinases/genetics , Animals , Chromosomes, Human, Pair 10/genetics , Chromosomes, Mammalian/genetics , Female , Genetic Loci , Genome-Wide Association Study , Humans , Mice , Mice, Inbred C57BL , Quantitative Trait Loci , Sequence Homology , Species Specificity
2.
Neuroscience ; 164(4): 1477-83, 2009 Dec 29.
Article in English | MEDLINE | ID: mdl-19778584

ABSTRACT

Locomotion is a complex behavior affected by many different brain- and spinal cord systems, as well as by variations in the peripheral nervous system. Recently, we found increased gene expression for EphA4, a gene intricately involved in motor neuron development, between high-active parental strain C57BL/6J and the low-active chromosome substitution strain 1 (CSS1). CSS1 mice carry chromosome 1 from A/J mice in a C57BL/6J genetic background, allowing localization of quantitative trait loci (QTL) on chromosome 1. To find out whether differences in motor neuron anatomy, possibly related to the changes in EphA4 expression, are involved in the motor activity differences observed in these strains, motor performance in various behavioral paradigms and anatomical differences in the ventral roots were investigated. To correlate the behavioral profiles to the spinal motor neuron morphology, not only CSS1 and its parental strains C57BL/6J (host) and A/J (donor) were examined, but also a set of other mouse inbred strains (AKR/J, 129x1/SvJ and DBA/2J). Significant differences were found between inbred strains on home cage motor activity levels, the beam balance test, grip test performance, and on alternating versus synchronous hind limb movement (hind limb hopping). Also, considerable differences were found in spinal motor neuron morphology, with A/J and CSS1 showing smaller, possibly less developed, motor neuron axons compared to all other inbred strains. For CSS1 and C57BL/6J, only genetically different for chromosome 1, a correlation was found between motor activity levels, synchronous hind limb movement and neuro-anatomical differences in spinal motor neurons. Inclusion of the other inbred strains, however, did not show this direct correlation. These data verifies the complex nature of the mammalian motor system that may be further dissected using genetic mapping populations derived from these inbred strains.


Subject(s)
Axons/ultrastructure , Motor Activity/physiology , Spinal Nerve Roots/ultrastructure , Animals , Male , Mice , Mice, Inbred Strains , Motor Activity/genetics , Motor Neurons/ultrastructure , Species Specificity
3.
Genes Brain Behav ; 8(1): 13-22, 2009 Feb.
Article in English | MEDLINE | ID: mdl-18721260

ABSTRACT

The generation of motor activity levels is under tight neural control to execute essential behaviors, such as movement toward food or for social interaction. To identify novel neurobiological mechanisms underlying motor activity levels, we studied a panel of chromosome substitution (CS) strains derived from mice with high (C57BL/6J strain) or low motor activity levels (A/J strain) using automated home cage behavioral registration. In this study, we genetically mapped the expression of baseline motor activity levels (horizontal distance moved) to mouse chromosome 1. Further genetic mapping of this trait revealed an 8.3-Mb quantitative trait locus (QTL) interval. This locus is distinct from the QTL interval for open-field anxiety-related motor behavior on this chromosome. By data mining, an existing phenotypic and genotypic data set of 2445 genetically heterogeneous mice (http://gscan.well.ox.ac.uk/), we confirmed linkage to the peak marker at 79 970 253 bp and refined the QTL to a 312-kb interval containing a single gene (A830043J08Rik). Sequence analysis showed a nucleotide deletion in the 3' untranslated region of the Riken gene. Genome-wide microarray gene expression profiling in brains of discordant F(2) individuals from CS strain 1 showed a significant upregulation of Epha4 in low-active F(2) individuals. Inclusion of a genetic marker for Epha4 confirmed that this gene is located outside of the QTL interval. Both Epha4 and A830043J08Rik are expressed in brain motor circuits, and similar to Epha4 mutants, we found linkage between reduced motor neurons number and A/J chromosome 1. Our findings provide a novel QTL and a potential downstream target underlying motor circuitry development and the expression of physical activity levels.


Subject(s)
Chromosome Mapping , Motor Activity/genetics , Animals , Chromosomes/genetics , DNA Primers , Female , Genotype , Male , Mice , Mice, Inbred C57BL , Oligonucleotide Array Sequence Analysis , Polymorphism, Single Nucleotide , Receptor, EphA4/genetics
4.
Behav Genet ; 39(2): 176-82, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19048365

ABSTRACT

The expression of motor activity levels in response to novel situations is under complex genetic and environmental control. Several genetic loci have been implicated in the regulation of this behavioral phenotype, but their relationship to epigenetic and epistatic interactions is relatively unknown. Here, we report on a quantitative trait locus (QTL) on mouse chromosome 1 for novelty-induced motor activity in the open field, using chromosome substitution strains derived from a high active host strain (C57BL/6J) and a low active donor strain (A/J). The QTL for open field (horizontal distance moved) peaked at the location of Kcnj9, however, QTL detection was initially masked by an interplay of both grandparent genetic origin and genetic co-factors influencing behavior on chromosome 1. Our findings indicate that epigenetic interactions can play an important role in the identification of behavioral QTLs and must be taken into consideration when applying behavioral genetic strategies.


Subject(s)
Chromosomes/ultrastructure , Epigenesis, Genetic , Animals , Behavior, Animal , Chromosome Mapping , Crosses, Genetic , Female , Lod Score , Male , Mice , Mice, Inbred C57BL , Models, Genetic , Polymorphism, Single Nucleotide , Quantitative Trait Loci
5.
Eur Neuropsychopharmacol ; 17(8): 532-40, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17275266

ABSTRACT

Various processes might explain the progression from casual to compulsive drug use underlying the development of drug addiction. Two of these, accelerated stimulus-response (S-R) habit learning and augmented assignment of motivational value to reinforcers, could be mediated via neuroadaptations associated with long-lasting sensitization to psychostimulant drugs, i.e. augmented dopaminergic neurotransmission in the striatum. Here, we tested the hypothesis that both processes, which are often regarded as mutually exclusive alternatives, are present in amphetamine-sensitized rats. Amphetamine-sensitized rats showed increased responding for food under a random ratio schedule of reinforcement, indicating increased incentive motivational value of food. In addition, satiety-specific devaluation experiments under a random interval schedule of reinforcement showed that amphetamine-sensitized animals exhibit accelerated development of S-R habits. These data show that both habit formation and motivational value of reinforcers are augmented in amphetamine-sensitized rats, and suggest that the task demands determine which behavioral alteration is most prominently expressed.


Subject(s)
Amphetamine/administration & dosage , Amphetamine/pharmacology , Central Nervous System Stimulants/administration & dosage , Central Nervous System Stimulants/pharmacology , Conditioning, Operant/drug effects , Habits , Reinforcement, Psychology , Animals , Food , Male , Rats , Rats, Wistar , Satiety Response/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...