Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 16(6): e0252263, 2021.
Article in English | MEDLINE | ID: mdl-34097703

ABSTRACT

Reproducibility is a key challenge of synthetic biology, but the foundation of reproducibility is only as solid as the reference materials it is built upon. Here we focus on the reproducibility of fluorescence measurements from bacteria transformed with engineered genetic constructs. This comparative analysis comprises three large interlaboratory studies using flow cytometry and plate readers, identical genetic constructs, and compatible unit calibration protocols. Across all three studies, we find similarly high precision in the calibrants used for plate readers. We also find that fluorescence measurements agree closely across the flow cytometry results and two years of plate reader results, with an average standard deviation of 1.52-fold, while the third year of plate reader results are consistently shifted by more than an order of magnitude, with an average shift of 28.9-fold. Analyzing possible sources of error indicates this shift is due to incorrect preparation of the fluorescein calibrant. These findings suggest that measuring fluorescence from engineered constructs is highly reproducible, but also that there is a critical need for access to quality controlled fluorescent calibrants for plate readers.


Subject(s)
Bacteria/genetics , Genetic Engineering/methods , Calibration , Flow Cytometry/methods , Fluorescence , Reproducibility of Results , Synthetic Biology/methods
2.
PLoS One ; 13(6): e0199432, 2018.
Article in English | MEDLINE | ID: mdl-29928012

ABSTRACT

Fluorescent reporters are commonly used to quantify activities or properties of both natural and engineered cells. Fluorescence is still typically reported only in arbitrary or normalized units, however, rather than in units defined using an independent calibrant, which is problematic for scientific reproducibility and even more so when it comes to effective engineering. In this paper, we report an interlaboratory study showing that simple, low-cost unit calibration protocols can remedy this situation, producing comparable units and dramatic improvements in precision over both arbitrary and normalized units. Participants at 92 institutions around the world measured fluorescence from E. coli transformed with three engineered test plasmids, plus positive and negative controls, using simple, low-cost unit calibration protocols designed for use with a plate reader and/or flow cytometer. In addition to providing comparable units, use of an independent calibrant allows quantitative use of positive and negative controls to identify likely instances of protocol failure. The use of independent calibrants thus allows order of magnitude improvements in precision, narrowing the 95% confidence interval of measurements in our study up to 600-fold compared to normalized units.


Subject(s)
Escherichia coli/metabolism , Calibration , Confidence Intervals , Flow Cytometry , Fluorescence
3.
Synth Biol (Oxf) ; 2(1): ysx003, 2017 Jan.
Article in English | MEDLINE | ID: mdl-32995504

ABSTRACT

Because of the technological limitations of de novo DNA synthesis in (i) making constructs containing tandemly repeated DNA sequence units, (ii) making an unbiased DNA library containing DNA fragments with sequence multiplicity in a specific region of target genes, and (iii) replacing DNA fragments, development of efficient and reliable biochemical gene assembly methods is still anticipated. We succeeded in developing a biological standardized genetic parts that are flanked between a common upstream and downstream nucleotide sequences in an appropriate plasmid DNA vector (BioBrick)-based novel assembly method that can be used to assemble genes composed of 25 tandemly repeated BioBricks in the correct format in vitro. We named our new DNA part assembly system: 'Quick Gene Assembly (QGA)'. The time required for finishing a sequential fusion of five BioBricks is less than 24 h. We believe that the QGA method could be one of the best methods for 'gene construction based on engineering principles' at the present time, and is also a method suitable for automation in the near future.

4.
PLoS One ; 11(6): e0157255, 2016.
Article in English | MEDLINE | ID: mdl-27258546

ABSTRACT

[This corrects the article DOI: 10.1371/journal.pone.0150182.].

5.
PLoS One ; 11(3): e0150182, 2016.
Article in English | MEDLINE | ID: mdl-26937966

ABSTRACT

We present results of the first large-scale interlaboratory study carried out in synthetic biology, as part of the 2014 and 2015 International Genetically Engineered Machine (iGEM) competitions. Participants at 88 institutions around the world measured fluorescence from three engineered constitutive constructs in E. coli. Few participants were able to measure absolute fluorescence, so data was analyzed in terms of ratios. Precision was strongly related to fluorescent strength, ranging from 1.54-fold standard deviation for the ratio between strong promoters to 5.75-fold for the ratio between the strongest and weakest promoter, and while host strain did not affect expression ratios, choice of instrument did. This result shows that high quantitative precision and reproducibility of results is possible, while at the same time indicating areas needing improved laboratory practices.


Subject(s)
Escherichia coli/metabolism , Green Fluorescent Proteins/biosynthesis , Escherichia coli/genetics , Green Fluorescent Proteins/genetics , Laboratory Proficiency Testing , Promoter Regions, Genetic , Protein Engineering , Reproducibility of Results , Transcription, Genetic , Transcriptional Activation
6.
PLoS One ; 9(5): e96771, 2014.
Article in English | MEDLINE | ID: mdl-24824845

ABSTRACT

The zebrafish is increasingly used for cardiovascular genetic and functional studies. We present a novel protocol to maintain and monitor whole isolated beating adult zebrafish hearts in culture for long-term experiments. Excised whole adult zebrafish hearts were transferred directly into culture dishes containing optimized L-15 Leibovitz growth medium and maintained for 5 days. Hearts were assessed daily using video-edge analysis of ventricle function using low power microscopy images. High-throughput histology techniques were used to assess changes in myocardial architecture and cell viability. Mean spontaneous Heart rate (HR, min(-1)) declined significantly between day 0 and day 1 in culture (96.7 ± 19.5 to 45.2 ± 8.2 min-1, mean ± SD, p = 0.001), and thereafter declined more slowly to 27.6 ± 7.2 min(-1) on day 5. Ventricle wall motion amplitude (WMA) did not change until day 4 in culture (day 0, 46.7 ± 13.0 µm vs day 4, 16.9 ± 1.9 µm, p = 0.08). Contraction velocity (CV) declined between day 0 and day 3 (35.6 ± 14.8 vs 15.2 ± 5.3 µms(-1), respectively, p = 0.012) while relaxation velocity (RV) declined quite rapidly (day 0, 72.5 ± 11.9 vs day 1, 29.5 ± 5.8 µms(-1), p = 0.03). HR and WMA responded consistently to isoproterenol from day 0 to day 5 in culture while CV and RV showed less consistent responses to beta-agonist. Cellular architecture and cross-striation pattern of cardiomyocytes remained unchanged up to day 3 in culture and thereafter showed significant deterioration with loss of striation pattern, pyknotic nuclei and cell swelling. Apoptotic markers within the myocardium became increasingly frequent by day 3 in culture. Whole adult zebrafish hearts can be maintained in culture-medium for up to 3 days. However, after day-3 there is significant deterioration in ventricle function and heart rate accompanied by significant histological changes consistent with cell death and loss of cardiomyocyte cell integrity. Further studies are needed to assess whether this preparation can be optimised for longer term survival.


Subject(s)
Heart Rate/physiology , Heart/physiology , Myocardial Contraction/physiology , Organ Culture Techniques/methods , Zebrafish/physiology , Animals , Cardiotonic Agents/pharmacology , Heart/anatomy & histology , Heart/drug effects , Heart Rate/drug effects , Isoproterenol/pharmacology , Myocardial Contraction/drug effects , Myocardium/metabolism
7.
J Biol Eng ; 3: 4, 2009 Mar 20.
Article in English | MEDLINE | ID: mdl-19298678

ABSTRACT

BACKGROUND: The engineering of many-component, synthetic biological systems is being made easier by the development of collections of reusable, standard biological parts. However, the complexity of biology makes it difficult to predict the extent to which such efforts will succeed. As a first practical example, the Registry of Standard Biological Parts started at MIT now maintains and distributes thousands of BioBrick standard biological parts. However, BioBrick parts are only standardized in terms of how individual parts are physically assembled into multi-component systems, and most parts remain uncharacterized. Standardized tools, techniques, and units of measurement are needed to facilitate the characterization and reuse of parts by independent researchers across many laboratories. RESULTS: We found that the absolute activity of BioBrick promoters varies across experimental conditions and measurement instruments. We choose one promoter (BBa_J23101) to serve as an in vivo reference standard for promoter activity. We demonstrated that, by measuring the activity of promoters relative to BBa_J23101, we could reduce variation in reported promoter activity due to differences in test conditions and measurement instruments by approximately 50%. We defined a Relative Promoter Unit (RPU) in order to report promoter characterization data in compatible units and developed a measurement kit so that researchers might more easily adopt RPU as a standard unit for reporting promoter activity. We distributed a set of test promoters to multiple labs and found good agreement in the reported relative activities of promoters so measured. We also characterized the relative activities of a reference collection of BioBrick promoters in order to further support adoption of RPU-based measurement standards. CONCLUSION: Relative activity measurements based on an in vivoreference standard enables improved measurement of promoter activity given variation in measurement conditions and instruments. These improvements are sufficient to begin to support the measurement of promoter activities across many laboratories. Additional in vivo reference standards for other types of biological functions would seem likely to have similar utility, and could thus improve research on the design, production, and reuse of standard biological parts.

SELECTION OF CITATIONS
SEARCH DETAIL
...