Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 13: 995521, 2022.
Article in English | MEDLINE | ID: mdl-36246249

ABSTRACT

This study analyzed the antimicrobial and antibiofilm action and cytotoxicity of extract (HEScL) and silver nanoparticles (AgNPs-HEScL) from Syzygium cumini leaves. GC-MS, UV-Vis, EDX, FEG/SEM, DLS and zeta potential assays were used to characterize the extract or nanoparticles. Antimicrobial, antibiofilm and cytotoxicity analyses were carried out by in vitro methods: agar diffusion, microdilution and normal oral keratinocytes spontaneously immortalized (NOK-SI) cell culture. MICs of planktonic cells ranged from 31.2-250 (AgNPs-HEScL) to 1,296.8-10,375 µg/ml (HEScL) for Actinomyces naeslundii, Fusobacterium nucleatum, Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus mutans, Streptococcus oralis, Veillonella dispar, and Candida albicans. AgNPs-HEScL showed antibiofilm effects (125-8,000 µg/ml) toward Candida albicans, Streptococcus mutans and Streptococcus oralis, and Staphylococcus aureus and Staphylococcus epidermidis. The NOK-SI exhibited no cytotoxicity when treated with 32.8 and 680.3 µg/ml of AgNPs-HEScL and HEScL, respectively, for 5 min. The data suggest potential antimicrobial and antibiofilm action of HEScL, and more specifically, AgNPs-HEScL, involving pathogens of medical and dental interest (dose-, time- and species-dependent). The cytotoxicity of HEScL and AgNPs-HEScL detected in NOK-SI was dose- and time-dependent. This study presents toxicological information about the lyophilized ethanolic extract of S. cumini leaves, including their metallic nanoparticles, and adds scientific values to incipient studies found in the literature.

2.
Anal Methods ; 14(20): 2003-2013, 2022 05 27.
Article in English | MEDLINE | ID: mdl-35543344

ABSTRACT

The present study reports the synthesis and characterization of hydrophobic deep eutectic solvents (HDES) based on fatty acids and tetrabutylammonium bromide (TBAB) or 1-octanol using Fourier transform infrared spectroscopy, and the analysis of the physicochemical properties (viscosity, density, electrical conductivity, and water content) of these solvents. A carbon paste electrode modified with 6.0% (m/m) decanoic acid and TBAB-based HDES was characterized by cyclic voltammetry, electrochemical impedance spectroscopy, and scanning electron microscopy. The oxidation peak currents of the proposed electrode were enhanced by its high electrochemical activity, fast electron transfer rate, and high surface area, while a remarkable decrease was observed in the peak potential separation. The electrochemical determination of hydroquinone (H2Q) was carried out using square-wave adsorptive anodic stripping voltammetry (SWAdASV). The electrode response was found to be linear in the H2Q concentration range of 2.5 × 10-6-3.0 × 10-3 mol L-1, with the limit of detection (LOD) of 7.7 × 10-7 mol L-1. The method was successfully applied for H2Q determination in dermatological creams.


Subject(s)
Carbon , Hydroquinones , Carbon/chemistry , Deep Eutectic Solvents , Electrochemical Techniques/methods , Electrodes , Hydroquinones/analysis , Solvents
3.
Mater Sci Eng C Mater Biol Appl ; 58: 768-73, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26478370

ABSTRACT

Different methods of functionalisation and the influence of the multi-walled carbon nanotube sizes were investigated on the bisphenol A electrochemical determination. Samples with diameters of 20 to 170 nmwere functionalized in HNO3 5.0 mol L(-1) and a concentrated sulphonitric solution. The morphological characterisations before and after acid treatment were carried out by scanning electron microscopy and cyclic voltammetry. The size and acid treatment affected the oxidation of bisphenol A. The multi-walled carbon nanotubes with a 20-40 nm diameter improved the method sensitivity and achieved a detection limit for determination of bisphenol A at 84.0 nmol L(-1).


Subject(s)
Benzhydryl Compounds/analysis , Electrochemical Techniques/instrumentation , Nanotubes, Carbon/chemistry , Phenols/analysis , Adsorption , Carbon/chemistry , Electrodes , Glass/chemistry , Nanotubes, Carbon/ultrastructure , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...