Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Evol ; 14(3): e11097, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38500858

ABSTRACT

The anthropogenic impacts on the environment, including deforestation and the escalating emissions of greenhouse gases, have significantly contributed to global climate change that can lead to alterations in ecosystems. In this context, protected areas (PAs) are pillars for biodiversity conservation by being able, for example, to maintain the viability of populations of endangered species. On the other hand, the species range shifts do not follow the limits of PAs, jeopardizing the conservation of these species. Furthermore, the effectiveness of PAs is consistently undermined by impacts stemming from land use, hunting activities, and illegal exploitation, both within the designated areas and in their adjacent zones. The objectives of this study are to quantify the impacts of climate change on the distribution of threatened and endemic birds of the Amazon biome, evaluate the effectiveness of PAs in protecting the richness of threatened birds, and analyze the representativeness of species within PAs. We found with our results that climate suitability loss is above 80 for 65% of taxa in the optimistic scenario and above 93% in the pessimistic scenario. The results show that PAs are not effective in protecting the richness of Amazonian birds, just as they are ineffective in protecting most of the taxa studied when analyzed individually Although some taxa are presented as "Protected," in future scenarios these taxa may suffer major shrinkages in their distributions and consequently present population unviability. The loss of climatically suitable areas and the effectiveness of PAs can directly influence the loss of ecosystem services, fundamental to maintaining the balance of biodiversity. Therefore, our study paves the way for conservation actions aimed at these taxa so that they can mitigate current and future extinctions due to climate change.

3.
PLoS One ; 15(7): e0236103, 2020.
Article in English | MEDLINE | ID: mdl-32678834

ABSTRACT

In recent years, carbon dioxide emissions have been potentiated by several anthropogenic processes that culminate in climate change, which in turn directly threatens biodiversity and the resilience of natural ecosystems. Tropical rainforests are among the most impacted biological realms. The Belém endemism center, which is one of the several endemism centers in Amazon, is located in the most affected area within the so-called "Deforestation Arc." Moreover, this region harbors a high concentration of Amazonian endangered bird species, of which 56% of them are considered to be under the threat of extinction. In this work, we sought to evaluate the current and future impacts of both climate change and deforestation on the distribution of endemic birds in the Belém Area of Endemism (BEA). Thus, we generated species distribution models for the 16 endemic bird species considering the current and two future gas emission scenarios (optimistic and pessimistic). We also evaluated climate change impacts on these birds in three different dispersal contexts. Our results indicate that BAE, the endemic taxa will lose an average of 73% of suitable areas by 2050. At least six of these birds species will have less than 10% or no future suitable habitat in all emission scenarios. One of the main mechanisms used to mitigate the impacts of climate change on these species in the near future is to assess the current system of protected areas. It is necessary to ensure that these areas will continue being effective in conserving these species even under climate change. The "Gurupi Mosaic" and the "Rio-Capim" watershed are areas of great importance because they are considered climate refuges according to our study. Thus, conservation efforts should be directed to the maintenance and preservation of these two large remnants of vegetation in addition to creating ecological corridors between them.


Subject(s)
Biodiversity , Birds/physiology , Climate Change , Conservation of Natural Resources , Ecosystem , Animals , Models, Biological
SELECTION OF CITATIONS
SEARCH DETAIL
...