Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Metab Brain Dis ; 38(1): 223-232, 2023 01.
Article in English | MEDLINE | ID: mdl-36308587

ABSTRACT

High levels of methionine (Met) and its metabolites, such as methionine sulfoxide (MetO), found in hypermethioninemia, can be detrimental to the body; however, the underlying mechanisms are still uncertain. Using a recently standardized protocol, the aim of this study was to investigate the effects of chronic administration of Met and/or MetO on parameters of oxidative damage in the total brain, liver, and kidney of young mice. Swiss male mice were subcutaneously injected with Met and MetO at concentrations of 0.35-1.2 g/kg body weight and 0.09-0.3 g/kg body weight, respectively, from the 10th-38th day post-birth, while the control group was treated with saline solution. Results showed that Met and/or MetO caused an increase in reactive oxygen species (ROS) and lipoperoxidation, along with a reduction of superoxide dismutase (SOD) and catalase (CAT) activities in the brain. In the liver, Met and/or MetO enhanced ROS and nitrite levels, and reduced SOD, CAT, and delta aminolevulinic dehydratase activities. The effects on the kidney were an increase in ROS production and SOD activity, and a reduction in thiol content and CAT activity. These data demonstrated the contribution of redox imbalance to the systemic changes found in patients with hypermethioninemia. In conclusion, our findings may help future studies to better understand the pathophysiological mechanisms of hypermethioninemia as well as contribute to the search for new therapeutic agents for this pathology.


Subject(s)
Antioxidants , Oxidative Stress , Rats , Mice , Male , Animals , Antioxidants/pharmacology , Antioxidants/metabolism , Reactive Oxygen Species/metabolism , Rats, Wistar , Catalase/metabolism , Liver/metabolism , Superoxide Dismutase/metabolism , Kidney/metabolism , Brain/metabolism , Racemethionine/metabolism , Racemethionine/pharmacology , Body Weight
2.
Neurochem Res ; 47(6): 1541-1552, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35178643

ABSTRACT

Glioblastoma (GB) is a highly aggressive and invasive brain tumor; its treatment remains palliative. Tannic acid (TA) is a polyphenol widely found in foods and possesses antitumor and neuroprotective activities. This study aimed to investigate the effect of TA on oxidative stress parameters and the activity of ectonucleotidases in the serum, platelets, and lymphocytes and/or in the brain of rats with preclinical GB. Rats with GB were treated intragastrically with TA (50 mg/kg/day) for 15 days or with a vehicle. In the platelets of the animals with glioma, the adenosine triphosphate (ATP) and adenosine monophosphate (AMP) hydrolysis and the catalase (CAT) activity decreased. Besides, the adenosine diphosphate (ADP) hydrolysis, adenosine (Ado) deamination, and the reactive oxygen species (ROS) and nitrite levels were increased in glioma animals; however, TA reversed ROS and nitrite levels and AMP hydrolysis alterations. In lymphocytes from animals with glioma, the ATP and ADP hydrolysis, as well as Ado deamination were increased; TA treatment countered this increase. In the brain of the animals with glioma, the ROS, nitrite, and thiobarbituric acid reactive substance (TBARS) levels increased and the thiol (SH) levels and CAT and superoxide dismutase (SOD) activities were decreased; TA treatment decreased the ROS and TBARS levels and restored the SOD activity. In the serum of the animals with glioma, the ATP hydrolysis decreased; TA treatment restored this parameter. Additionally, the ROS levels increased and the SH and SOD activity decreased by glioma implant; TA treatment enhanced nitrite levels and reversed SOD activity. Altogether, our results suggest that TA is an important target in the treatment of GB, as it modulates purinergic and redox systems.


Subject(s)
Glioblastoma , Adenosine/pharmacology , Adenosine Diphosphate/metabolism , Adenosine Monophosphate/pharmacology , Adenosine Triphosphate/metabolism , Animals , Antioxidants/pharmacology , Brain/metabolism , Glioblastoma/drug therapy , Nitrites , Oxidative Stress , Rats , Reactive Oxygen Species , Superoxide Dismutase , Tannins/pharmacology , Tannins/therapeutic use , Thiobarbituric Acid Reactive Substances
3.
Metab Brain Dis ; 37(2): 439-449, 2022 02.
Article in English | MEDLINE | ID: mdl-34748129

ABSTRACT

The aim of this study was to investigate the anticancer potential of blueberry extract (Vaccinium virgatum) against a C6 rat glioma lineage. Cultures of the C6 cells were exposed to blueberry extract at concentrations of 50 to 600 µg/mL for 12, 24, 48, or 72 h and then evaluated for cell viability, proliferation, migration, colony formation and oxidative stress. We also evaluated the effects of blueberry extract on primary rat cortical astrocytes. Our results show that treatment with blueberry extract did not alter the viability or proliferation of normal primary astrocytes but it did significantly reduce the viability in 21.54 % after 48 h and proliferation in 8.59 % after 24 h of C6 cells at 200 µg/mL. We also observed a reduction in the size of the colonies of 29.99 % at 100 µg/mL when compared to the control cells and cell migration was also reduced at 50 µg/mL. After 72 h, there was a reduction in the reactive oxygen species levels ranging from 46.26 to 34.73 %, in addition to a 380.2 % increase in total thiol content. Superoxide dismutase, catalase, and glutathione S-transferase activities were also enhanced when compared to the control. Taken together this data suggests that blueberry extract exerts some selective anticancer activity in C6 glioma cells.


Subject(s)
Blueberry Plants , Glioma , Animals , Antioxidants/pharmacology , Glioma/drug therapy , Oxidation-Reduction , Oxidative Stress , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Rats
4.
J Food Biochem ; 45(10): e13920, 2021 10.
Article in English | MEDLINE | ID: mdl-34510463

ABSTRACT

In the present study, we aimed to investigate the protective effect of blueberry extract on behavioral, biochemical, and morphological changes in an experimental model of lipopolysaccharide (LPS)-induced depressive behavior. Male Swiss mice were pretreated with the vehicle, fluoxetine (20 mg/kg), or Vaccinium virgatum extract (100 mg/kg and 200 mg/kg) for seven days. On day 7, the animals were administered an LPS injection (0.83 mg/kg) or vehicle. Pretreatment with blueberry extract prevented LPS-induced depressive-like behavior. Moreover, LPS increased serum levels of total cholesterol; however, V. virgatum did not prevent the increase in total cholesterol levels. Furthermore, the extract prevented the LPS-induced elevation in serum reactive oxygen species. Also, V. virgatum extract increased the HDL cholesterol levels. Additionally, this extract prevented the LPS-induced decrease in glucose levels and serum adenosine deaminase activity. Collectively, V. virgatum extract has a potential protective effect against changes similar to those observed in patients with depression. PRACTICAL APPLICATIONS: Vaccinium virgatum, popularly known as blueberry, has been effective in preventing or treating neuropsychiatric diseases owing to its antioxidant, anti-inflammatory, and neuroprotective properties. Fluoxetine is a known drug used to treat depression; however, its adverse effects result in therapeutic non-adherence. Thus, the search for new natural compounds possessing antidepressant activities while lacking adverse effects is crucial for identifying novel therapeutic alternatives against depression.


Subject(s)
Blueberry Plants , Animals , Antidepressive Agents/pharmacology , Humans , Lipopolysaccharides/toxicity , Mice , Oxidative Stress , Plant Extracts/pharmacology , Plant Extracts/therapeutic use
5.
Int J Dev Neurosci ; 81(3): 285-289, 2021 May.
Article in English | MEDLINE | ID: mdl-33606291

ABSTRACT

Hypermethioninemia is characterized by high plasma concentrations of methionine (Met) and its metabolites, such as methionine sulfoxide (MetO), and neurological changes, such as cerebral edema and cognitive deficits. The aim of this study was to analyze the redox status and acetylcholinesterase (AChE) activity in the hippocampus, striatum, and cerebellum of young Wistar rats subjected to an acute hypermethioninemia protocol. The animals received, by subcutaneous injection, a single dose of Met (0.4 g/kg), MetO (0.1 g/kg), and Met + MetO, and 1 or 3 hr after administration, the animals were euthanatized for brain structure obtaining. In the hippocampus, an increase in lipid peroxidation and glutathione peroxidase (GPx) activity was observed at 1 hr in the MetO and Met + MetO groups, and a reduction in the superoxide dismutase activity was found in the Met + MetO group. Met and/or MetO induced a decrease in the thiol content and GPx activity and enhanced the lipid peroxidation at 3 hr. In the striatum, a reduction in the thiol content and GPx activity, an increase in lipid peroxidation, and AChE activity were induced by Met and/or MetO at 1 or 3 hr. Additionally, in the cerebellum, an increase in the AChE in the MetO and Met + MetO groups 1 hr after administration was observed. These data help to better understand the pathophysiological mechanisms that underlie the neurological changes found in hypermethioninemia patients.


Subject(s)
Acetylcholinesterase/metabolism , Amino Acid Metabolism, Inborn Errors/metabolism , Cerebellum/metabolism , Corpus Striatum/metabolism , Glycine N-Methyltransferase/deficiency , Hippocampus/metabolism , Animals , Glycine N-Methyltransferase/metabolism , Homeostasis/physiology , Lipid Peroxidation/physiology , Oxidation-Reduction , Oxidative Stress/physiology , Rats , Rats, Wistar , Reactive Oxygen Species/metabolism , Superoxide Dismutase/metabolism , Superoxide Dismutase-1/metabolism
6.
Amino Acids ; 52(11-12): 1545-1558, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33184691

ABSTRACT

We investigated the ability of tannic acid (TA) to prevent oxidative and nitrosative damage in the brain, liver, kidney, and serum of a rat model of acute hypermethioninemia. Young Wistar rats were divided into four groups: I (control), II (TA 30 mg/kg), III (methionine (Met) 0.4 g/kg + methionine sulfoxide (MetO) 0.1 g/kg), and IV (TA/Met + MetO). Rats in groups II and IV received TA orally for seven days, and rats of groups I and III received an equal volume of water. After pretreatment with TA, rats from groups II and IV received a single subcutaneous injection of Met + MetO, and were euthanized 3 h afterwards. In specific brain structures and the kidneys, we observed that Met + MetO led to increased reactive oxygen species (ROS), nitrite, and lipid peroxidation levels, followed by a reduction in thiol content and antioxidant enzyme activity. On the other hand, pretreatment with TA prevented both oxidative and nitrosative damage. In the serum, Met + MetO caused a decrease in the activity of antioxidant enzymes, which was again prevented by TA pretreatment. In contrast, in the liver, there was a reduction in ROS levels and an increase in total thiol content, which was accompanied by a reduction in catalase and superoxide dismutase activities in the Met + MetO group, and pretreatment with TA was able to prevent only the reduction in catalase activity. Conclusively, pretreatment with TA has proven effective in preventing oxidative and nitrosative changes caused by the administration of Met + MetO, and may thus represent an adjunctive therapeutic approach for treatment of hypermethioninemia.


Subject(s)
Amino Acid Metabolism, Inborn Errors/drug therapy , Glycine N-Methyltransferase/deficiency , Nitrosative Stress/drug effects , Oxidative Stress/drug effects , Tannins/pharmacology , Amino Acid Metabolism, Inborn Errors/metabolism , Amino Acid Metabolism, Inborn Errors/pathology , Animals , Brain/drug effects , Brain/metabolism , Glutathione Peroxidase/genetics , Glycine N-Methyltransferase/metabolism , Humans , Kidney/drug effects , Kidney/metabolism , Lipid Peroxidation/drug effects , Liver/drug effects , Liver/metabolism , Nitrosative Stress/genetics , Oxidation-Reduction/drug effects , Oxidative Stress/genetics , Rats , Reactive Oxygen Species/metabolism , Serum/drug effects , Serum/metabolism , Superoxide Dismutase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...