Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Poult Sci ; 102(12): 103104, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37837680

ABSTRACT

The aim of the present study was to identify and quantify the metabolites (metabolome analysis) of the pectoralis major muscle in male red-winged tinamou (Rhynchotus rufescens) selected for growth traits. A selection index was developed for females [body weight (BW), chest circumference (CC), and thigh circumference (TC)] and males [BW, CC, TC, semen volume, and sperm concentration] in order to divide the animals into 2 experimental groups: selection group with a higher index (TinamouS) and commercial group with a lower index (TinamouC). Twenty male offspring of the 2 groups (TinamouS, n = 10; TinamouC, n = 10) were confined for 350 d. The birds were slaughtered and pectoralis major muscle samples were collected, subjected to polar and apolar metabolites extractions and analyzed by proton nuclear magnetic resonance (1H NMR) spectroscopy. Analysis of the polar metabolomic profile identified 65 metabolites; 29 of them were differentially expressed between the experimental groups (P < 0.05). The TinamouS groups exhibited significantly higher concentrations (P < 0.05) of 25 metabolites, including anserine, aspartate, betaine, carnosine, creatine, glutamate, threonine, 3-methylhistidine, NAD+, pyruvate, and taurine. Significantly higher concentrations of cysteine, beta-alanine, lactose, and choline were observed in the TinamouC group (P < 0.05). The metabolites identified in the muscle provided information about the main metabolic pathways (higher impact value and P < 0.05), for example, phenylalanine, tyrosine and tryptophan biosynthesis; alanine, aspartate and glutamate metabolism; D-glutamine and D-glutamate metabolism; ß-alanine metabolism; glycine, serine and threonine metabolism; taurine and hypotaurine metabolism; histidine metabolism; phenylalanine metabolism. The NMR spectra of apolar fraction showed 8 classes of chemical compounds. The metabolome analysis shows that the selection index resulted in the upregulation of polyunsaturated fatty acids, unsaturated fatty acids, phosphocholines, phosphoethanolamines, triacylglycerols, and glycerophospholipids. The present study suggests that, despite few generations, the selection based on muscle growth traits promoted changes in metabolite concentrations in red-winged tinamou.


Subject(s)
Aspartic Acid , Pectoralis Muscles , Female , Male , Animals , Chickens , Semen , Metabolome , Metabolomics/methods , Body Weight , Taurine , beta-Alanine , Phenylalanine , Threonine , Glutamates
2.
Trop Anim Health Prod ; 55(1): 20, 2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36542167

ABSTRACT

The aim of the present study was to evaluate the efficiency of selection for body growth and its association with carcass and meat quality traits in the red-winged tinamou. Two experimental groups were selected based on the selection index: selection group with a higher index (TinamouS) and commercial group with a lower index (TinamouC). Weight at 180 days and slaughter weight were significantly higher (p < 0.05) in the TinamouS group, as were hot carcass weight, skinless breast weight, wing weight, and thigh and drumstick weight. The meat quality traits or sensory attributes did not differ significantly (p > 0.05) between groups. A significant positive correlation (0.59; p < 0.05) was found between shear force and chewability and a significant negative correlation (- 0.59; p < 0.05) between aroma intensity and strange aroma. The present study suggests that the selection index promotes greater body growth and preserves meat quality and sensory traits in red-winged tinamou.


Subject(s)
Meat , Palaeognathae , Animals , Body Composition , Meat/analysis , Meat/standards , Muscles/physiology , Palaeognathae/growth & development , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...