Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 26(4): 3296-3314, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38197174

ABSTRACT

Surface functionalized ultrafine CoFe2O4 nanoparticles (NPs), with mean diameter ∼5 nm, were investigated by means of DC magnetization and AC susceptibility over the temperature range of 4-400 K. All NPs present the same CoFe2O4 core, with different molecular surface coatings, increasing gradually the number of carbon atoms in the coating layer: glycine (C2H5NO2), alanine (C3H7NO2), aminobutanoic acid (C4H9NO2), aminohexanoic acid (C6H13NO2), and aminododecanoic acid (C12H25NO2). Samples were intentionally fabricated in order to modulate the core-core magnetic dipolar interaction, as the thickness of the coating layer increases with the number of carbon atoms in the coating molecule. The magnetic data of the uncoated CoFe2O4 NPs were also collected for comparison. All investigated CoFe2O4 NPs (coated and uncoated) are in a magnetically blocked state at room temperature as evidenced by ZFC/FC measurements and the presence of hysteresis with ∼700 Oe coercivity. Low temperature magnetization scans show slightly constricted hysteresis loops with coercivity decreasing systematically with a decreasing number of carbon atoms in the coating molecule, possibly resulting from differences in magnetic dipole coupling between NPs. Large thermomagnetic irreversibility, slow monotonic increase in the FC magnetization and non-saturation of the magnetization give evidence for the cluster glass (CG) nature in the CoFe2O4 NPs. The out of phase part (χ'') of AC susceptibility for all samples shows a clear frequency dependent hump which was analyzed to distinguish superparamagnetic (SPM), cluster glass (CG) and spin glass (SG) behavior by using Néel-Arrhenius, Vogel-Fulcher, and power law fittings. These analyses rule out the SPM state and suggest the presence of significant inter-cluster dipolar interaction, giving rise to CG cooperative freezing in the high-temperature region. In the low-temperature range, however, the disordered spins on the nanoparticle's surface play an important role in the formation of the SG-like state, as evidenced by Arrott plots and temperature dependency of dM/dH in the initial magnetization curves. In summary, the magnetic measurements showed that undercooling the system evolves from a SPM state of weakly interacting spin clusters, through the CG state induced by strong dipolar interaction, to the SG state resulting from the frustration of the disordered surface spins.

2.
ACS Appl Bio Mater ; 4(5): 3880-3890, 2021 05 17.
Article in English | MEDLINE | ID: mdl-35006813

ABSTRACT

Infectious diseases are a worldwide concern. They are responsible for increasing the mortality rate and causing economic and social problems. Viral epidemics and pandemics, such as the COVID-19 pandemic, force the scientific community to consider molecules with antiviral activity. A number of viral infections still do not have a vaccine or efficient treatment and it is imperative to search for vaccines to control these infections. In this context, nanotechnology in association with the design of vaccines has presented an option for virus control. Nanovaccines have displayed an impressive immune response using a low dosage. This review aims to describe the advances and update the data in studies using nanovaccines and their immunomodulatory effect against human viruses.


Subject(s)
Nanomedicine/trends , Vaccine Development/trends , Viral Vaccines , Virus Diseases/prevention & control , Adaptive Immunity , COVID-19 Vaccines , Humans , Immunity, Innate , Vaccines, DNA , Vaccines, Subunit , Vaccines, Synthetic , Viral Vaccines/immunology , mRNA Vaccines
3.
Artif Cells Nanomed Biotechnol ; 46(8): 2002-2012, 2018 Dec.
Article in English | MEDLINE | ID: mdl-29179603

ABSTRACT

Nanocapsules (NCS-DOX) with an oily core of selol and a shell of poly(methyl vinyl ether-co-maleic anhydride) covalently conjugated to doxorubicin were developed. These nanocapsules are spherical, with an average hydrodynamic diameter of about 170 nm, and with negative zeta potential. NCS-DOX effectively co-delivered the selol and the doxorubicin into 4T1 cells and changed the intracellular distribution of DOX from the nuclei to the mitochondria. Moreover, a significantly increased cytotoxicity against 4T1 cells was observed, which is suggestive of additive or synergic effect of selol and doxorubicin. In conclusion, PVM/MA nanocapsules are suitable platforms to co-deliver drugs into cancer cells.


Subject(s)
Adenocarcinoma/drug therapy , Doxorubicin , Mammary Neoplasms, Animal/drug therapy , Nanocapsules , Selenium Compounds , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Animals , Cell Line, Tumor , Cell Nucleus/metabolism , Cell Nucleus/pathology , Doxorubicin/chemistry , Doxorubicin/pharmacokinetics , Doxorubicin/pharmacology , Female , Mammary Neoplasms, Animal/metabolism , Mammary Neoplasms, Animal/pathology , Mice , Mitochondria/metabolism , Mitochondria/pathology , NIH 3T3 Cells , Nanocapsules/chemistry , Nanocapsules/therapeutic use , Selenium Compounds/chemistry , Selenium Compounds/pharmacokinetics , Selenium Compounds/pharmacology
4.
Carbohydr Polym ; 178: 378-385, 2017 Dec 15.
Article in English | MEDLINE | ID: mdl-29050608

ABSTRACT

This study describes the synthesis of magnetic nanohydrogels by miniemulsion polymerization technique. Dextran was derivatized by the glycidyl methacrylate to anchor vinyl groups on polysaccharides backbone, allowing its use as a macromonomer for miniemulsion polymerization, as confirmed by proton nuclear magnetic resonance spectroscopy (13C NMR). Magnetite nanoparticles were synthesized by coprecipitation, followed by air oxidation to maghemite. The results of X-ray diffractometry (XRD), Raman and transmission electron microscopy (TEM) analysis showed that maghemite nanoparticles were obtained with a diameter of 5.27nm. The entrapment of iron oxide nanoparticles in a dextran nanohydrogel matrix was confirmed by thermogravimetric analysis (TGA), scanning transmission electron microscopy (STEM) and Zeta potential data. The magnetic nanohydrogels presented superparamagnetic behavior and were colloidal stable in physiological during 30days. Our findings suggest that the synthesized magnetic nanohydrogel are potential candidates for use in drug delivery systems due to its physicochemical and magnetic properties.

5.
Sci Total Environ ; 551-552: 228-37, 2016 May 01.
Article in English | MEDLINE | ID: mdl-26878635

ABSTRACT

Magnetic exfoliated vermiculite is a synthetic nanocomposite that quickly and efficiently absorbs organic compounds such as oil from water bodies. It was developed primarily to mitigate pollution, but the possible adverse impacts of its application have not yet been evaluated. In this context, the acute toxicity of magnetic exfoliated vermiculite and exfoliated vermiculite was herein assessed by genotoxic and histopathological biomarkers in zebrafish (Danio rerio). DNA fragmentation was statistically significant for all groups exposed to the magnetic exfoliated vermiculite and for fish exposed to the highest concentration (200mg/L) of exfoliated vermiculite, whereas the micronucleus frequency, nuclear abnormalities and histopathological alterations were not statistically significant for the fish exposed to these materials. In the intestinal lumen, epithelial cells and goblet cells, we found the presence of magnetic exfoliated vermiculite and exfoliated vermiculite, but no alterations or presence of the materials-test in the gills or liver were observed. Our findings suggest that the use of magnetic exfoliated vermiculite and exfoliated vermiculite during standard ecotoxicological assays caused DNA damage in D. rerio, whose alterations may be likely to be repaired, indicating that the magnetic nanoparticles have the ability to promote genotoxic damage, such as DNA fragmentation, but not mutagenic effects.


Subject(s)
Aluminum Silicates/toxicity , Mutagens/toxicity , Water Pollutants, Chemical/toxicity , Zebrafish/physiology , Animals , Biomarkers/metabolism
6.
Chemistry ; 19(19): 6122-36, 2013 May 03.
Article in English | MEDLINE | ID: mdl-23512788

ABSTRACT

New, ultrasmall nanoparticles with sizes below 5 nm have been obtained. These small rigid platforms (SRP) are composed of a polysiloxane matrix with DOTAGA (1,4,7,10-tetraazacyclododecane-1-glutaric anhydride-4,7,10-triacetic acid)-Gd(3+) chelates on their surface. They have been synthesised by an original top-down process: 1) formation of a gadolinium oxide Gd2O3 core, 2) encapsulation in a polysiloxane shell grafted with DOTAGA ligands, 3) dissolution of the gadolinium oxide core due to chelation of Gd(3+) by DOTAGA ligands and 4) polysiloxane fragmentation. These nanoparticles have been fully characterised using photon correlation spectroscopy (PCS), transmission electron microscopy (TEM), a superconducting quantum interference device (SQUID) and electron paramagnetic resonance (EPR) to demonstrate the dissolution of the oxide core and by inductively coupled plasma mass spectrometry (ICP-MS), mass spectrometry, fluorescence spectroscopy, (29)Si solid-state NMR, (1)H NMR and diffusion ordered spectroscopy (DOSY) to determine the nanoparticle composition. Relaxivity measurements gave a longitudinal relaxivity r1 of 11.9 s(-1) mM(-1) per Gd at 60 MHz. Finally, potentiometric titrations showed that Gd(3+) is strongly chelated to DOTAGA (complexation constant logß110 =24.78) and cellular tests confirmed the that nanoconstructs had a very low toxicity. Moreover, SRPs are excreted from the body by renal clearance. Their efficiency as contrast agents for MRI has been proved and they are promising candidates as sensitising agents for image-guided radiotherapy.


Subject(s)
Gadolinium/chemistry , Heterocyclic Compounds, 1-Ring/chemistry , Silicon Dioxide/chemistry , Siloxanes/chemistry , Substance P/analogs & derivatives , Contrast Media/chemistry , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy , Microscopy, Electron, Transmission , Nanoparticles/chemistry , Radiotherapy, Image-Guided , Spectrometry, Fluorescence , Substance P/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...