Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Technol ; : 1-14, 2023 Jun 23.
Article in English | MEDLINE | ID: mdl-37306530

ABSTRACT

The development of industrial process in line with the circular economy and the environmental, social and corporate governance (ESG) is the foundation for sustainable economic development. Alternatives that make feasible the transformation of residues in added value products are promising and contribute to the repositioning of the industry towards sustainability, due to financial leverage obtained from lesser operational costs when compared with conventional processes, therefore increasing the company competitivity. In this study, it is presented a promising and innovative technology for the recycling of agro-industrial residues, the sugarcane bagasse and the high-pressure water boiler effluent, in the development of a low-cost adsorbent (HC-T) using the hydrothermal carbonization processes and its application in the adsorption of herbicide Diuron and Methylene Blue dye from synthetic contaminated water. The hydrothermal carbonization was performed in a Teflon contained inside a sealed stainless-steel reactor self-pressurized at 200°C, biomass-to-effluent (m/v) ratio of 1:3 and 24 h. The synthesized material (HC) was activated in an oven at 450°C for 10 min, thus being named adsorbent (HC-T) and characterized by textural, structural and spectroscopic analyses. The low-cost adsorbent HC-T presented an 11-time-fold increase in surface area and ∼40% increase in total pore volume in comparison with the HC material. The kinetic and isotherm adsorption experiment results highlighted that the HC-T was effective as a low-cost adsorbent for the removal of herbicide Diuron and Methylene Blue dye from synthetic contaminated waters, with an adsorption capacity of 35.07 (63.25% removal) and 307.09 mg g-1 (36,47% removal), respectively.

2.
Environ Sci Pollut Res Int ; 29(53): 79935-79953, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35091942

ABSTRACT

The sol-gel route was used to synthesize a biophenolic resin from a blend of Kraft black liquor and condensed tannin. The biobased resin has an amorphous structure and diversified surface functional groups. The biomaterial thermal stability was improved by Kraft black liquor, which increased the fixed carbon yield by 19.78% in an oxidant medium and 9.07% in an inert medium. Moreover, the presence of fixed carbon and char is positively related to the material flame retardant property. Additionally, impedance measurements were used to understand the physical phenomena occurring at the polymeric matrix's interface and the material's final properties. The biobased resin characterization and the considerable increase in the presence of micropollutants in surface and water bodies suggest the new biomaterial application in the adsorption process. Thus, its adsorption capacity toward several organic and inorganic micropollutants and its effectiveness in complex water matrices were evaluated. Methylene blue was used as a model compound to assess the influence of the resin composition on the adsorption capacity, and the type H isotherm indicates the high affinity of the biobased resin toward the micropollutant. The adsorption occurs in multilayer by intermolecular interaction and electrostatic forces. The amount of Kraft black liquor favored the adsorption, and the adsorption capacity was greater than 1250 mg g-1. When inorganic compounds were evaluated, the carboxyl and phenol groups favor the biomaterial affinity toward metal ions. Cu2+ and Ni2+ were completely removed from the contaminated water, and the adsorption capacity of the other inorganic compounds was: Pb2+ (36.97 mg g-1), Al3+ (22.17 mg g-1), Ba2+ (12.76 mg g-1), Ag1+ (33.85 mg g-1), and Fe2+ (19.44 mg g-1). In contrast, the adsorption capacity of the organic micropollutants was: 2,4-D (3.09 mg g-1), diuron (5.89 mg g-1), atrazine (2.71 mg g-1), diclofenac (2.04 mg g-1), caffeine (5.79 mg g-1), acetaminophen (4.80 mg g-1), methylene Blue (106.66 mg g-1), and methyl orange (30.48 mg g-1). The results pointed that the adsorption efficiency of organic micropollutants increases with the distribution coefficient (logD), indicating the biobased resin affinity toward more lipophilic compounds and ionized species.


Subject(s)
Atrazine , Flame Retardants , Proanthocyanidins , Water Pollutants, Chemical , Water Purification , Water Purification/methods , Water Pollutants, Chemical/chemistry , Methylene Blue , Diclofenac , Acetaminophen , Caffeine , Diuron , Lead , Adsorption , Carbon , 2,4-Dichlorophenoxyacetic Acid , Water , Phenols , Oxidants , Biocompatible Materials , Kinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...