Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Biol Drug Des ; 103(4): e14525, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38627214

ABSTRACT

An early exploration of the benzothiazole class against two kinetoplastid parasites, Leishmania infantum and Trypanosoma cruzi, has been performed after the identification of a benzothiazole derivative as a suitable antileishmanial initial hit. The first series of derivatives focused on the acyl fragment of its class, evaluating diverse linear and cyclic, alkyl and aromatic substituents, and identified two other potent compounds, the phenyl and cyclohexyl derivatives. Subsequently, new compounds were designed to assess the impact of the presence of diverse substituents on the benzothiazole ring or the replacement of the endocyclic sulfur by other heteroatoms. All compounds showed relatively low cytotoxicity, resulting in decent selectivity indexes for the most active compounds. Ultimately, the in vitro ADME properties of these compounds were assessed, revealing a satisfying water solubility, gastrointestinal permeability, despite their low metabolic stability and high lipophilicity. Consequently, compounds 5 and 6 were identified as promising hits for further hit-to-lead exploration within this benzothiazole class against L. infantum, thus providing promising starting points for the development of antileishmanial candidates.


Subject(s)
Antiprotozoal Agents , Leishmania infantum , Trypanosoma cruzi , Antiprotozoal Agents/pharmacology , Benzothiazoles/pharmacology
2.
Eur J Immunol ; 49(7): 1023-1037, 2019 07.
Article in English | MEDLINE | ID: mdl-30919410

ABSTRACT

NLRP3 inflammasome is a protein complex crucial to caspase-1 activation and IL-1ß and IL-18 maturation. This receptor participates in innate immune responses to different pathogens, including the bacteria of genus Brucella. Our group recently demonstrated that Brucella abortus-induced IL-1ß secretion involves NLRP3 inflammasome and it is partially dependent on mitochondrial ROS production. However, other factors could be involved, such as P2X7-dependent potassium efflux, membrane destabilization, and cathepsin release. Moreover, there is increasing evidence that nitric oxide acts as a modulator of NLRP3 inflammasome. The aim of this study was to unravel the mechanism of NLRP3 inflammasome activation induced by B. abortus, as well as the involvement of bacterial nitric oxide (NO) as a modulator of this inflammasome pathway. We demonstrated that NO produced by B. abortus can be used by the bacteria to modulate IL-1ß secretion in infected murine macrophages. Additionally, our results suggest that B. abortus-induced IL-1ß secretion depends on a P2X7-independent potassium efflux, lysosomal acidification, cathepsin release, mechanisms clearly associated to NLRP3 inflammasome. In summary, our results help to elucidate the molecular mechanisms of NLRP3 activation and regulation during an intracellular bacterial infection.


Subject(s)
Brucella abortus/metabolism , Brucellosis/immunology , Inflammasomes/metabolism , Macrophages/immunology , Nitric Oxide/metabolism , Animals , Immunity, Innate , Interleukin-1beta/metabolism , Macrophages/microbiology , Mice , Mice, Inbred C57BL , Mice, Knockout , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Nitric Oxide Synthase Type II/genetics , Reactive Oxygen Species/metabolism , Receptors, Purinergic P2X7/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...