Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Antioxidants (Basel) ; 12(3)2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36978786

ABSTRACT

Ferroptosis is a recently recognized form of regulated cell death involving lipid peroxidation. Glutathione peroxidase 4 (GPX4) plays a central role in the regulation of ferroptosis through the suppression of lipid peroxidation generation. Connections have been reported between ferroptosis, lipid metabolism, cancer onset, and drug resistance. Recently, interest has grown in ferroptosis induction as a potential strategy to overcome drug resistance in hematological malignancies. GATA-1 is a key transcriptional factor controlling hematopoiesis-related gene expression. Two GATA-1 isoforms, the full-length protein (GATA-1FL) and a shorter isoform (GATA-1S), are described. A balanced GATA-1FL/GATA-1S ratio helps to control hematopoiesis, with GATA-1S overexpression being associated with hematological malignancies by promoting proliferation and survival pathways in hematopoietic precursors. Recently, optical techniques allowed us to highlight different lipid profiles associated with the expression of GATA-1 isoforms, thus raising the hypothesis that ferroptosis-regulated processes could be involved. Lipidomic and functional analysis were conducted to elucidate these mechanisms. Studies on lipid peroxidation production, cell viability, cell death, and gene expression were used to evaluate the impact of GPX4 inhibition. Here, we provide the first evidence that over-expressed GATA-1S prevents K562 myeloid leukemia cells from lipid peroxidation-induced ferroptosis. Targeting ferroptosis is a promising strategy to overcome chemoresistance. Therefore, our results could provide novel potential therapeutic approaches and targets to overcome drug resistance in hematological malignancies.

2.
Cells ; 11(3)2022 01 29.
Article in English | MEDLINE | ID: mdl-35159276

ABSTRACT

To fight neurodegenerative diseases, several therapeutic strategies have been proposed that, to date, are either ineffective or at the early preclinical stages. Intracellular protein aggregates represent the cause of about 70% of neurodegenerative disorders, such as Alzheimer's disease. Thus, autophagy, i.e., lysosomal degradation of macromolecules, could be employed in this context as a therapeutic strategy. Searching for a compound that stimulates this process led us to the identification of a 37/67kDa laminin receptor inhibitor, NSC48478. We have analysed the effects of this small molecule on the autophagic process in mouse neuronal cells and found that NSC48478 induces the conversion of microtubule-associated protein 1A/1B-light chain 3 (LC3-I) into the LC3-phosphatidylethanolamine conjugate (LC3-II). Interestingly, upon NSC48478 treatment, the contribution of membranes to the autophagic process derived mainly from the non-canonical m-TOR-independent endocytic pathway, involving the Rab proteins that control endocytosis and vesicle recycling. Finally, qRT-PCR analysis suggests that, while the expression of key genes linked to canonical autophagy was unchanged, the main genes related to the positive regulation of endocytosis (pinocytosis and receptor mediated), along with genes regulating vesicle fusion and autolysosomal maturation, were upregulated under NSC48478 conditions. These results strongly suggest that 37/67 kDa inhibitor could be a useful tool for future studies in pathological conditions.


Subject(s)
Autophagy , Laminin , Animals , Laminin/pharmacology , Mice , Microtubule-Associated Proteins/metabolism , Naphthols/pharmacology , Receptors, Laminin
3.
Entropy (Basel) ; 23(5)2021 May 19.
Article in English | MEDLINE | ID: mdl-34069687

ABSTRACT

The tomography of a single quantum particle (i.e., a quantum wave packet) in an accelerated frame is studied. We write the Schrödinger equation in a moving reference frame in which acceleration is uniform in space and an arbitrary function of time. Then, we reduce such a problem to the study of spatiotemporal evolution of the wave packet in an inertial frame in the presence of a homogeneous force field but with an arbitrary time dependence. We demonstrate the existence of a Gaussian wave packet solution, for which the position and momentum uncertainties are unaffected by the uniform force field. This implies that, similar to in the case of a force-free motion, the uncertainty product is unaffected by acceleration. In addition, according to the Ehrenfest theorem, the wave packet centroid moves according to classic Newton's law of a particle experiencing the effects of uniform acceleration. Furthermore, as in free motion, the wave packet exhibits a diffraction spread in the configuration space but not in momentum space. Then, using Radon transform, we determine the quantum tomogram of the Gaussian state evolution in the accelerated frame. Finally, we characterize the wave packet evolution in the accelerated frame in terms of optical and simplectic tomogram evolution in the related tomographic space.

4.
NAR Genom Bioinform ; 2(4): lqaa096, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33575640

ABSTRACT

DNA methylation is a stable epigenetic modification, extremely polymorphic and driven by stochastic and deterministic events. Most of the current techniques used to analyse methylated sequences identify methylated cytosines (mCpGs) at a single-nucleotide level and compute the average methylation of CpGs in the population of molecules. Stable epialleles, i.e. CpG strings with the same DNA sequence containing a discrete linear succession of phased methylated/non-methylated CpGs in the same DNA molecule, cannot be identified due to the heterogeneity of the 5'-3' ends of the molecules. Moreover, these are diluted by random unstable methylated CpGs and escape detection. We present here MethCoresProfiler, an R-based tool that provides a simple method to extract and identify combinations of methylated phased CpGs shared by all components of epiallele families in complex DNA populations. The methylated cores are stable over time, evolve by acquiring or losing new methyl sites and, ultimately, display high information content and low stochasticity. We have validated this method by identifying and tracing rare epialleles and their families in synthetic or in vivo complex cell populations derived from mouse brain areas and cells during postnatal differentiation. MethCoresProfiler is written in R language. The software is freely available at https://github.com/84AP/MethCoresProfiler/.

5.
J Cell Physiol ; 234(11): 20829-20846, 2019 11.
Article in English | MEDLINE | ID: mdl-31049966

ABSTRACT

Maintenance of a balanced expression of the two isoforms of the transcription factor GATA-1, the full-length protein (GATA-1FL ) and a shorter isoform (GATA-1 S ), contributes to control hematopoiesis, whereas their dysregulation can alter the differentiation/proliferation potential of hematopoietic precursors thereby eventually leading to a variety of hematopoietic disorders. Although it is well established that these isoforms play opposite roles in these remarkable processes, most of the molecular pathways involved remain unknown. Here, we demonstrate that GATA-1FL and GATA-1S are able to differently influence intracellular redox states and reactive oxygen species (ROS) compartmentation in the erythroleukemic K562 cell line, thus shedding novel mechanistic insights into the processes of cell proliferation and apoptosis resistance in myeloid precursors. Furthermore, given the role played by ROS signaling as a strategy to escape apoptosis and evade cell-mediated immunity in myeloid cells, this study highlights a mechanism through which aberrant expression of GATA-1 isoforms could play a role in the leukemogenic process.


Subject(s)
Cell Compartmentation , GATA1 Transcription Factor/metabolism , Leukemia, Myeloid/metabolism , Leukemia, Myeloid/pathology , Reactive Oxygen Species/metabolism , Antioxidants/metabolism , Apoptosis/drug effects , Cell Survival/drug effects , Cytochrome b Group/metabolism , DNA, Mitochondrial/metabolism , Electron Transport Complex II/metabolism , Humans , K562 Cells , Oxidation-Reduction , Oxidative Stress/drug effects , Protein Isoforms/metabolism , Protein Subunits/metabolism , Quercetin/pharmacology , Succinate Dehydrogenase/metabolism
6.
Biochem J ; 474(24): 4075-4090, 2017 12 01.
Article in English | MEDLINE | ID: mdl-29046391

ABSTRACT

Spatio-temporal compartmentalization of membrane proteins is critical for the regulation of diverse vital functions in eukaryotic cells. It was previously shown that, at the apical surface of polarized MDCK cells, glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs) are organized in small cholesterol-independent clusters of single GPI-AP species (homoclusters), which are required for the formation of larger cholesterol-dependent clusters formed by multiple GPI-AP species (heteroclusters). This clustered organization is crucial for the biological activities of GPI-APs; hence, understanding the spatio-temporal properties of their membrane organization is of fundamental importance. Here, by using direct stochastic optical reconstruction microscopy coupled to pair correlation analysis (pc-STORM), we were able to visualize and measure the size of these clusters. Specifically, we show that they are non-randomly distributed and have an average size of 67 nm. We also demonstrated that polarized MDCK and non-polarized CHO cells have similar cluster distribution and size, but different sensitivity to cholesterol depletion. Finally, we derived a model that allowed a quantitative characterization of the cluster organization of GPI-APs at the apical surface of polarized MDCK cells for the first time. Experimental FRET (fluorescence resonance energy transfer)/FLIM (fluorescence-lifetime imaging microscopy) data were correlated to the theoretical predictions of the model.


Subject(s)
Cell Membrane Structures/metabolism , Cell Polarity/physiology , Epithelial Cells/metabolism , GPI-Linked Proteins/metabolism , Models, Biological , Animals , CHO Cells , Cell Membrane Structures/genetics , Cricetinae , Cricetulus , Dogs , GPI-Linked Proteins/genetics , Madin Darby Canine Kidney Cells
7.
Nanoscale Res Lett ; 12(1): 167, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28274088

ABSTRACT

Different chemical formulations for the synthesis of highly intercalated graphite bisulfate have been tested. In particular, nitric acid, potassium nitrate, potassium dichromate, potassium permanganate, sodium periodate, sodium chlorate, and hydrogen peroxide have been used in this synthesis scheme as the auxiliary reagent (oxidizing agent). In order to evaluate the presence of delamination, and pre-expansion phenomena, and the achieved intercalation degree in the prepared samples, the obtained graphite intercalation compounds have been characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray powder diffraction (XRD), infrared spectroscopy (FT-IR), micro-Raman spectroscopy (µ-RS), and thermal analysis (TGA). Delamination and pre-expansion phenomena were observed only for nitric acid, sodium chlorate, and hydrogen peroxide, while the presence of strong oxidizers (KMnO4, K2Cr2O7) led to stable graphite intercalation compounds. The largest content of intercalated bisulfate is achieved in the intercalated compounds obtained from NaIO4 and NaClO3.

8.
Beilstein J Nanotechnol ; 8: 21-27, 2017.
Article in English | MEDLINE | ID: mdl-28144561

ABSTRACT

In this work we present a novel route to produce a graphene-based film on a polymer substrate. A transparent graphite colloidal suspension was applied to a slat of poly(methyl methacrylate) (PMMA). The good adhesion to the PMMA surface, combined with the shear stress, allows a uniform and continuous spreading of the graphite nanocrystals, resulting in a very uniform graphene multilayer coating on the substrate surface. The fabrication process is simple and yields thin coatings characterized by high optical transparency and large electrical piezoresitivity. Such properties envisage potential applications of this polymer-supported coating for use in strain sensing. The electrical and mechanical properties of these PMMA/graphene coatings were characterized by bending tests. The electrical transport was investigated as a function of the applied stress. The structural and strain properties of the polymer composite material were studied under stress by infrared thermography and micro-Raman spectroscopy.

9.
Opt Express ; 24(12): 12565-76, 2016 Jun 13.
Article in English | MEDLINE | ID: mdl-27410278

ABSTRACT

A method is presented for recovering the intensity depth profile, by confocal optical microscopy, in transparent and amorphous samples with low scattering. The response function of a confocal Raman microscope has been determined by using the second Rayleigh-Sommerfeld diffraction integral and scalar wave optics within paraxial approximation, taking into account the refractive index mismatch between the sample and the medium surrounding the objective lens. An iterative multi-fitting-scheme, based on the conjugate gradient method and Brent algorithm, allowed to fit several depth profile curves simultaneously and retrieve the beam waist, the signal amplitude and the position of the sample surface. The reliability and accuracy of the theoretical procedure has been investigated through comparison with experimental measurements of the Raman depth profiles for different pinhole diameters. The model is shown to provide accurate description of the effect of the mismatch of the refractive index and of the dependence of the Raman signal on the depth with discrepancies lower than 3%. This procedure constitutes a first step towards the development of a manageable theoretical framework, amenable to a relatively simple numerical implementation, for the solution of the 'inverse' problem of finding the correct reconstruction of unknown profiles of chemical species within the sample, starting from experimental information gathered from micro-Raman depth profiling.

10.
Analyst ; 140(24): 8138-47, 2015 Dec 21.
Article in English | MEDLINE | ID: mdl-26541293

ABSTRACT

A new algorithm based on the Maximum Entropy Method (MEM) is proposed for recovering both the lifetime distribution and the zero-time shift from time-resolved fluorescence decay intensities. The developed algorithm allows the analysis of complex time decays through an iterative scheme based on entropy maximization and the Brent method to determine the minimum of the reduced chi-squared value as a function of the zero-time shift. The accuracy of this algorithm has been assessed through comparisons with simulated fluorescence decays both of multi-exponential and broad lifetime distributions for different values of the zero-time shift. The method is capable of recovering the zero-time shift with an accuracy greater than 0.2% over a time range of 2000 ps. The center and the width of the lifetime distributions are retrieved with relative discrepancies that are lower than 0.1% and 1% for the multi-exponential and continuous lifetime distributions, respectively. The MEM algorithm is experimentally validated by applying the method to fluorescence measurements of the time decays of the flavin adenine dinucleotide (FAD).


Subject(s)
Algorithms , Chemistry Techniques, Analytical/methods , Entropy , Spectrometry, Fluorescence , Statistics as Topic/methods , Flavin-Adenine Dinucleotide/chemistry , Fluorescence , Time Factors
11.
Nanoscale Res Lett ; 10(1): 1007, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26245856

ABSTRACT

Owing to the very brittle nature of tellurium powder, nanoscopic grains with an average size of 4.8 ± 0.8 nm were produced by dry vibration milling technique using a mixer/mill apparatus. A novel material was obtained by binding the nanosized tellurium grains with poly(methyl methacrylate) (PMMA) polymer. The morphology, elemental composition, and structural and optical properties of Te/PMMA films were investigated. The prepared material was composed of hexagonal tellurium and α-phase of tellurium oxide. The electrical properties of the films were studied, for different electrode contact configurations, in dark condition and under white light illumination varying the optical power density from 2 to 170 mW/cm(2) and turning the light on and off cyclically. Data analysis shows that the photoconductivity of the film with sandwich contact configuration is a linear function of the light power density and increases more than 2 orders of magnitude as compared to the photoresponse of the film with coplanar contact configuration.

12.
Article in English | MEDLINE | ID: mdl-25679696

ABSTRACT

The propagation, in a shallow water, of nonlinear ring waves in the form of multisolitons is investigated theoretically. This is done by solving both analytically and numerically the cylindrical (also referred to as concentric) Korteweg-de Vries equation (cKdVE). The latter describes the propagation of weakly nonlinear and weakly dispersive ring waves in an incompressible, inviscid, and irrotational fluid. The spatiotemporal evolution is determined for a cylindrically symmetric response to the free fall of an initially given multisoliton ring. Analytically, localized solutions in the form of tilted solitons are found. They can be thought as single- or multiring solitons formed on a conic-modulated water surface, with an oblique asymptote in arbitrary radial direction (tilted boundary condition). Conversely, the ring solitons obtained from numerical solutions are localized single- or multiring structures (standard solitons), whose wings vanish along all radial directions (standard boundary conditions). It is found that the wave dynamics of these standard ring-type localized structures differs substantially from that of the tilted structures. A detailed analysis is performed to determine the main features of both multiring localized structures, particularly their break-up, multiplet formation, overlapping of pulses, overcoming of one pulse by another, "amplitude-width" complementarity, etc., that are typically ascribed to a solitonlike behavior. For all the localized structures investigated, the solitonlike character of the rings is found to be preserved during (almost) entire temporal evolution. Due to their cylindrical character, each ring belonging to one of these multiring localized structures experiences the physiological decay of the peak and the physiological increase of the width, respectively, while propagating ("amplitude-width" complementarity). As in the planar geometry, i.e., planar Korteweg-de Vries equation (pKdVE), we show that, in the case of the tilted analytical solutions, the instantaneous product P=(maximumamplitude)×(width)(2) is rigorously constant during all the soliton spatiotemporal evolution. Nevertheless, in the case of the numerical solutions, we show that this product is not preserved; i.e., the instantaneous physiological variations of both peak and width of each ring do not compensate each other as in the tilted analytical case. In fact, the amplitude decay occurs faster than the width increase, so that P decreases in time. This is more evident in the early times than in the asymptotic ones (where actually cKdVE reduces to pKdVE). This is in contrast to previous investigations on the early-time localized solutions of the cKdVE.

13.
J Biomed Mater Res A ; 103(4): 1436-46, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25046830

ABSTRACT

Gold nanoparticles are increasingly being employed in innovative biological applications thanks to their advantages of material- and size-dependent physics and chemical interactions with the cellular systems. On the other hand, growing concern has emerged on the toxicity which would render gold-based nanoparticles harmful to cell cultures, animals, and humans. Emerging attention is focused on the interaction of gold nanoparticles with nervous system, especially regarding the ability to overcome the blood-brain barrier (BBB) which represents the major impediment to the delivery of therapeutics into the brain. We synthesized highly stable 2-mercapto-1-methylimidazole-stabilized gold-nanoparticles (AuNPs)-mmi to investigate their entry, accumulation, and toxicity in vitro (SH-SY5Y human neuroblastoma cells) and in vivo (brain of C57BL/6 mice) through optical and electron microscopy. After incubation in the cell culture medium at the lowest dose of 0.1 mg/mL the (AuNPs)-mmi nanoparticles were found compacted and recruited into endosome/lysosomes (1 h) before their fusion (2 h) and the onset of neuronal death by apoptosis (4 h) as proved by terminal-transferase-mediated dUTP nick end labeling assay and caspase-3 immunoreactivity. The ability of (AuNPs)-mmi to cross the BBB was assessed by injection in the caudal vein of C57BL/6 mice. Among different brain regions, the nanoparticles were found in the CaudatoPutamen area, mainly in the striatal neurons 4 h after injection. These neurons showed the typical hallmarks of apoptosis. Our findings provide, for the first time, the dynamic of 2-mercapto-1-methylimidazole nanogold uptake. The molecular mechanism which underlies the nanogold-driven apoptotic event is analyzed and discussed in order to take into account when designing nanomaterials to interface with biological structures.


Subject(s)
Apoptosis/drug effects , Gold/pharmacology , Imidazoles/pharmacology , Metal Nanoparticles/chemistry , Neurons/cytology , Animals , Brain/drug effects , Brain/metabolism , Cell Shape/drug effects , Endocytosis/drug effects , Humans , In Situ Nick-End Labeling , Injections, Intravenous , Metal Nanoparticles/ultrastructure , Mice, Inbred C57BL , Time Factors , Tissue Distribution/drug effects
14.
Opt Lett ; 39(4): 826-9, 2014 Feb 15.
Article in English | MEDLINE | ID: mdl-24562217

ABSTRACT

We have developed a theoretical model for photon migration through scattering media in the presence of an absorbing inhomogeneity. A closed-form solution for the average diffuse intensity has been obtained through an iterative approximation scheme of the steady-state diffusion equation. The model describes absorbing defects in a wide range of values. Comparisons with the results of Monte Carlo simulations show that the error of the model is lower than 3% for size inclusion lower than 4 mm and absorption contrast up to the threshold value of the "black defect." The proposed model provides a tractable mathematical basis for diffuse optical and photoacoustic tomographic reconstruction techniques.


Subject(s)
Monte Carlo Method , Photons , Absorption , Diffusion , Scattering, Radiation
15.
Nanoscale Res Lett ; 8(1): 403, 2013 Sep 30.
Article in English | MEDLINE | ID: mdl-24229076

ABSTRACT

A simple approach for the bulk production of carbon nanoscrolls (CNSs) is described. This method is based on the application of shear-friction forces to convert graphite nanoplatelets into carbon nanoscrolls using a bi-axially oriented polypropylene (BOPP) surface. The combined action of shear and friction forces causes the exfoliation of graphite nanoplatelets and the simultaneous roll-up of graphite layers. Evidence of the CNS formation is given by optical microscopy, scanning electron microscopy, and transmission electron microscopy. These investigations reveal that the CNSs have a long tube-like and fusiform structure with a hollow core surrounded by few layers of graphene. Micro-Raman spectroscopy shows that the produced structures are not defect free, and optical spectroscopy reveals distinctive features due to the presence of two weak absorption bands at 224 and 324 nm.

16.
Nanoscale Res Lett ; 8(1): 94, 2013 Feb 20.
Article in English | MEDLINE | ID: mdl-23425002

ABSTRACT

Graphite nanoplatelets (GNPs) react with elemental sulfur to provide a mechanically stable, spongy material characterized by good electrical conductivity and high surface development; such unique property combination makes these novel nanostructured materials very useful for applications in different technological fields. The carbon-sulfur reaction can be accurately investigated by thermal analysis (differential scanning calorimetry and thermogravimetric analysis) and energy-dispersive X-ray spectroscopy combined with scanning electron microscopy. The thermal treatment required for the formation of electrically conductive monosulfur connections among the GNP unities has been investigated. PACS: 81.05.Ue, 81.05.Rm, 81.16.Be.

17.
Nanoscale ; 5(1): 331-6, 2013 Jan 07.
Article in English | MEDLINE | ID: mdl-23165948

ABSTRACT

In this paper two-dimensional (2D) photonic Thue-Morse quasicrystals (ThMo-PQCs) in active CdSe/CdS nanorod (NR) doped polymer nanocomposites are proposed and experimentally demonstrated. Active PQCs and undoped lattices have been prepared in a one-step fabrication process by an electron beam lithography technique (EBL) and the effects on light extraction and emission directionality are studied experimentally. Vertical extraction of light was found to be strongly dependent on both the geometric parameters of the ThMo-PQCs and the presence of NR dopants. By changing the geometrical parameters of the photonic structures, the resonance peak could be tuned from a narrow bluish green emission at 543 nm up to a red-NIR emission at 711 nm with a full width at half-maximum of 22 nm which is in good agreement with Bragg's diffraction theory and free photon band structure. Angular resolved measurements revealed a directional profile in the far-field distribution with guided mode extraction in both doped and undoped PQCs and an enhancement as high as 6.5-fold in light extraction was achieved in the doped photonic structures. These experimental results indicate the critical role of the CdSe/CdS NRs in improving the light extraction efficiency of 2D ThMo-PQCs for solid-state lighting and lasing.


Subject(s)
Cadmium Compounds/chemistry , Crystallization/methods , Nanostructures/chemistry , Nanostructures/ultrastructure , Polymers/chemistry , Refractometry/methods , Selenium Compounds/chemistry , Sulfides/chemistry , Light , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Particle Size , Scattering, Radiation , Surface Properties
18.
Sensors (Basel) ; 11(4): 3483-97, 2011.
Article in English | MEDLINE | ID: mdl-22163807

ABSTRACT

A monolithic silica gel matrix with entrapped glucose oxidase (GOD) was constructed as a bioactive element in an optical biosensor for glucose determination. Intrinsic fluorescence of free and immobilised GOD was investigated in the visible range in presence of different glucose concentrations by time-resolved spectroscopy with time-correlated single-photon counting detector. A three-exponential model was used for analysing the fluorescence transients. Fractional intensities and mean lifetime were shown to be sensitive to the enzymatic reaction and were used for obtaining calibration curve for glucose concentration determination. The sensing system proposed achieved high resolution (up to 0.17 mM) glucose determination with a detection range from 0.4 mM to 5 mM.


Subject(s)
Biosensing Techniques/methods , Enzymes, Immobilized/chemistry , Glucose Oxidase/chemistry , Glucose/analysis , Flavin-Adenine Dinucleotide/chemistry , Fluorescence , Phase Transition
19.
Opt Express ; 17(21): 18843-51, 2009 Oct 12.
Article in English | MEDLINE | ID: mdl-20372618

ABSTRACT

We describe a spatially resolved interferometric technique combined with a phase reconstruction method that provides a quantitative two-dimensional profile of the refractive index and spatial distribution of the optical contrast between the on-off states of electrically switchable diffraction gratings as a function of the external electric field. The studied structures are holographic gratings optically written into polymer/liquid crystal composites through single-beam spatial light modulation by means of computer-generated holograms. The electro-optical response of the gratings is also discussed. The diffraction efficiency results to be dependent on the incident light polarization suggesting the possibility to develop polarization dependent switching devices.

20.
Opt Express ; 16(22): 17667-81, 2008 Oct 27.
Article in English | MEDLINE | ID: mdl-18958047

ABSTRACT

In this study we have theoretically and experimentally investigated the behavior of first order approximation contrast function when purely scattering inhomogeneities located at different depths inside a turbid thick slab are considered. Results of model predictions have been compared with Finite element method simulations and tested on phantoms. To this aim, we have developed for the first time to our knowledge a fitting algorithm for estimating both the scattering perturbation parameter and the shift of the inhomogeneity from the middle plane, allowing one to reduce the uncertainties due to depth. This is important for optical mammography because effects of the depth can cause uncertainties in the derived tumor optical properties that are above 20% and the scattering properties of tumors differ from those of the sourrounding healthy tissue by a comparable extent.

SELECTION OF CITATIONS
SEARCH DETAIL
...