Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 26(4): 045707, 2015 Jan 30.
Article in English | MEDLINE | ID: mdl-25566691

ABSTRACT

We investigate-through simulations and analytical calculations-the consequences of uniaxial lateral compression applied to the upper layer of multilayer graphene. The simulations of compressed graphene show that strains larger than 2.8% induce soliton-like deformations that further develop into large, mobile folds. Such folds were indeed experimentally observed in graphene and other solid lubricants two-dimensional (2D) materials. Interestingly, in the soliton-fold regime, the shear stress decreases with the strain s, initially as s(-2/3) and rapidly going to zero. Such instability is consistent with the recently observed negative dynamic compressibility of 2D materials. We also predict that the curvatures of the soliton-folds are given by r(c) = δ√(ß/2α) where 1 ≤ δ ≤ 2 and ß and α are respectively related to the layer bending modulus and to the interlayer binding energy of the material. This finding might allow experimental estimates of the ß/α ratio of 2D materials from fold morphology.

2.
J Chem Phys ; 135(4): 044517, 2011 Jul 28.
Article in English | MEDLINE | ID: mdl-21806148

ABSTRACT

Molecular dynamics simulations are used to examine the relationship between water-like anomalies and the liquid-liquid critical point in a family of model fluids with multi-Gaussian, core-softened pair interactions. The core-softened pair interactions have two length scales, such that the longer length scale associated with a shallow, attractive well is kept constant while the shorter length scale associated with the repulsive shoulder is varied from an inflection point to a minimum of progressively increasing depth. The maximum depth of the shoulder well is chosen so that the resulting potential reproduces the oxygen-oxygen radial distribution function of the ST4 model of water. As the shoulder well depth increases, the pressure required to form the high density liquid decreases and the temperature up to which the high-density liquid is stable increases, resulting in the shift of the liquid-liquid critical point to much lower pressures and higher temperatures. To understand the entropic effects associated with the changes in the interaction potential, the pair correlation entropy is computed to show that the excess entropy anomaly diminishes when the shoulder well depth increases. Excess entropy scaling of diffusivity in this class of fluids is demonstrated, showing that decreasing strength of the excess entropy anomaly with increasing shoulder depth results in the progressive loss of water-like thermodynamic, structural and transport anomalies. Instantaneous normal mode analysis was used to index the overall curvature distribution of the fluid and the fraction of imaginary frequency modes was shown to correlate well with the anomalous behavior of the diffusivity and the pair correlation entropy. The results suggest in the case of core-softened potentials, in addition to the presence of two length scales, energetic, and entropic effects associated with local minima and curvatures of the pair interaction play an important role in determining the presence of water-like anomalies and the liquid-liquid phase transition.

3.
J Chem Phys ; 132(23): 234509, 2010 Jun 21.
Article in English | MEDLINE | ID: mdl-20572723

ABSTRACT

Molecular dynamics simulations and instantaneous normal mode (INM) analysis of a fluid with core-softened pair interactions and waterlike liquid-state anomalies are performed to obtain an understanding of the relationship between thermodynamics, transport properties, and the potential energy landscape. Rosenfeld scaling of diffusivities with the thermodynamic excess and pair correlation entropy is demonstrated for this model. The INM spectra are shown to carry information about the dynamical consequences of the interplay between length scales characteristic of anomalous fluids, such as bimodality of the real and imaginary branches of the frequency distribution. The INM spectral information is used to partition the liquid entropy into two contributions associated with the real and imaginary frequency modes; only the entropy contribution from the imaginary branch captures the nonmonotonic behavior of the excess entropy and diffusivity in the anomalous regime of the fluid.

4.
J Chem Phys ; 132(16): 164505, 2010 Apr 28.
Article in English | MEDLINE | ID: mdl-20441286

ABSTRACT

Using molecular dynamics we investigate the thermodynamics, dynamics, and structure of 250 diatomic molecules interacting by a core-softened potential. This system exhibits thermodynamic, dynamic, and structural anomalies: a maximum in density-temperature plane at constant pressure and maximum and minimum points in the diffusivity and translational order parameter against density at constant temperature. Starting with very dense systems and decreasing density the mobility at low temperatures first increases, reaches a maximum, then decreases, reaches a minimum and finally increases. In the pressure-temperature phase diagram the line of maximum translational order parameter is located outside the line of diffusivity extrema that is enclosing the temperature of maximum density line. We compare our results with the monomeric system showing that the anisotropy due to the dumbbell leads to a much larger solid phase and to the appearance of a liquid crystal phase.

5.
J Chem Phys ; 133(24): 244506, 2010 Dec 28.
Article in English | MEDLINE | ID: mdl-21198001

ABSTRACT

Using molecular dynamic simulations, we study a system of particles interacting through a continuous core-softened potentials consisting of a hard core, a shoulder at closest distances, and an attractive well at further distance. We obtain the pressure-temperature phase diagram of this system for various depths of the tunable attractive well. Since this is a two length scale potential, density, diffusion, and structural anomalies are expected. We show that the effect of increasing the attractive interaction between the molecules is to shrink the region in pressure in which the density and the diffusion anomalies are present. If the attractive forces are too strong, particle will be predominantly in one of the two length scales and no density of diffusion anomaly is observed. The structural anomalous region is present for all the cases.

6.
J Chem Phys ; 128(6): 064901, 2008 Feb 14.
Article in English | MEDLINE | ID: mdl-18282068

ABSTRACT

We investigate by molecular dynamics simulations a continuous isotropic core-softened potential with attractive well in three dimensions, introduced by Franzese [J. Mol. Liq. 136, 267 (2007)], that displays liquid-liquid coexistence with a critical point and waterlike density anomaly. Besides the thermodynamic anomalies, here we find diffusion and structural anomalies. The anomalies, not observed in the discrete version of this model, occur with the same hierarchy that characterizes water. We discuss the differences in the anomalous behavior of the continuous and the discrete model in the framework of the excess entropy, calculated within the pair correlation approximation.

7.
J Chem Phys ; 125(12): 124503, 2006 Sep 28.
Article in English | MEDLINE | ID: mdl-17014187

ABSTRACT

Using molecular dynamics simulations we investigate the structure of a system of particles interacting through a continuous core-softened interparticle potential. We found for the translational order parameter t a local maximum at a density rho(t-max) and a local minimum at rho(t-min)>rho(t-max). Between rho(t-max) and rho(t-min), the t parameter anomalously decreases upon increasing pressure. For the orientational order parameter Q(6) a maximum was observed at a density rho(t-max)

Subject(s)
Models, Chemical , Isotopes/chemistry , Pressure
8.
J Chem Phys ; 124(8): 084505, 2006 Feb 28.
Article in English | MEDLINE | ID: mdl-16512727

ABSTRACT

Using molecular-dynamics simulations and integral equations (Rogers-Young, Percus-Yevick, and hypernetted chain closures) we investigate the thermodynamics of particles interacting with continuous core-softened intermolecular potential. Dynamic properties are also analyzed by the simulations. We show that, for a chosen shape of the potential, the density, at constant pressure, has a maximum for a certain temperature. The line of temperatures of maximum density (TMD) was determined in the pressure-temperature phase diagram. Similarly the diffusion constant at a constant temperature, D, has a maximum at a density rho(max) and a minimum at a density rho(min) < rho(max). In the pressure-temperature phase diagram the line of extrema in diffusivity is outside of the TMD line. Although this interparticle potential lacks directionality, this is the same behavior observed in simple point charge/extended water.

SELECTION OF CITATIONS
SEARCH DETAIL
...