Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 13(6)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38592872

ABSTRACT

The change in land use in the Brazilian Cerrado modifies the dynamics of soil organic matter (SOM) and, consequently, carbon (C) stocks and their fractions and soil enzyme activities. This study evaluated the effect of brachiaria (Brachiaria decumbens Stapf.) intercropped with Arabica coffee (Coffea arabica L.) on the stock and fractions of soil carbon and enzyme activities. The experiment was arranged in a completely randomized block design with three replications and treatments in a factorial design. The first factor consisted of coffee with or without intercropped brachiaria, the second of Arabica coffee cultivars ('I.P.R.103' and 'I.P.R.99') and the third factor of the point of soil sampling (under the canopy (UC) and in inter-rows (I)). Soil was sampled in layers of 0-10, 10-20, 20-30, 30-40, 40-60 and 60-80 cm. Soil from the 0-10 cm layer was also used to analyze enzymatic activity. Significant effects of coffee intercropped with brachiaria were confirmed for particulate organic carbon (POC), with highest contents in the 0-10 and 20-30 cm layers (9.62 and 6.48 g kg-1, respectively), and for soil enzymes (280.83 and 180.3 µg p-nitrophenol g-1 for arylsulfatase and ß-glucosidase, respectively).

2.
Plants (Basel) ; 13(3)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38337898

ABSTRACT

Edaphoclimatic conditions influence nitrous oxide (N2O) emissions from agricultural systems where soil biochemical properties play a key role. This study addressed cumulative N2O emissions and their relations with soil biochemical properties in a long-term experiment (26 years) with integrated crop-livestock farming systems fertilized with two P and K rates. The farming systems consisted of continuous crops fertilized with half of the recommended P and K rates (CCF1), continuous crops at the recommended P and K rates (CCF2), an integrated crop-livestock system with half of the recommended P and K rates (ICLF1), and an integrated crop-livestock at the recommended P and K rates (ICLF2). The ICLF2 may have promoted the greatest entry of carbon into the soil and positively influenced the soil's biochemical properties. Total carbon (TC) was highest in ICLF2 in both growing seasons. The particulate and mineral-associated fractions in 2016 and 2017, respectively, and the microbial biomass fraction in the two growing seasons were also very high. Acid phosphatase and arylsulfatase in ICLF1 and ICLF2 were highest in 2016. The soil properties correlated with cumulative N2O emissions were TC, total nitrogen (TN), particulate nitrogen (PN), available nitrogen (AN), mineral-associated organic carbon (MAC), and microbial biomass carbon (MBC). The results indicated that ICLF2 induces an accumulation of more stable organic matter (OM) fractions that are unavailable to the microbiota in the short term and result in lower N2O emissions.

3.
J Environ Manage ; 348: 119295, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37827072

ABSTRACT

The emission of nitrous oxide (N2O), one of the main greenhouse gases, which contributes significantly to global warming, is a major challenge in modern agriculture. The effects of land use systems on N2O emissions are the result of multiple variables, whose interactions need to be better understood. In this sense, this study analyzed the possible effects of different soil managements, crop rotations and sequences, as well as edaphoclimatic factors causing N2O emissions from soils in the Cerrado biome (scrubland). The following four land-use systems were evaluated: 1) No-tillage cultivation with biennial crop rotations and sequences: legume-grass and alternating grass-legume crops in the second season - NT-SS/MP; 2) No-tillage with biennial rotations and sequences: grass-legume and alternating second crop of legume-grass - NT-MP/SS; 3) Conventional planting with disc harrow and biennial legume-grass rotation-CT-S/M; and 4) Native Cerrado (CE), no agricultural land use. The legume and grass species, planted in the two no-tillage treatments were soybean, followed by sorghum BRS3.32 (Sorghum bicolor (L.) Moench) (SS), and maize, followed by pigeon pea (Cajanus cajan) (MP). Nitrous oxide emissions were evaluated for 25 months (October 2013 to October 2015), and the results were grouped in annual, total, growing and non-growing seasons, as well as yield-scaled N2O emissions. The mean N2O fluxes were 24.14, 15.71, 32.49 and 1.87 µg m-2 h-1 in the NT-SS/MP, NT-MP/SS, CT-S/M and Cerrado areas respectively. Cumulative N2O fluxes over the total evaluation period from the systems NT-SS/MP, NT-MP/SS, CT-S/M and CE, respectively, were 3.47, 2.29, 4.87 and 0.26 kg ha-1. A correlation between N2O fluxes and the environmental variables was observed, with the exception of water-filled pore space (WFPS), but N2O peaks were associated with WFPS values of >65%. In the 2014-2015 growing season, yield-scaled N2O emissions from NT-MP/SS were lower than from CT-S/M. A multi-factor approach indicated that conventional management with main season soybean or maize and no alternating crop sequence intensifies soil N2O emissions in the Cerrado.


Subject(s)
Greenhouse Gases , Soil , Nitrous Oxide/analysis , Agriculture/methods , Seasons , Crops, Agricultural , Zea mays , Vegetables , Glycine max , Fertilizers/analysis
4.
Plants (Basel) ; 12(13)2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37447015

ABSTRACT

New agricultural practices and land-use intensification in the Cerrado biome have affected the soil carbon stocks. A major part of the native vegetation of the Brazilian Cerrado, a tropical savanna-like ecoregion, has been replaced by crops, which has caused changes in the soil carbon (C) stocks. To ensure the sustainability of this intensified agricultural production, actions have been taken to increase soil C stocks and mitigate greenhouse gas emissions. In the last two decades, new agricultural practices have been adopted in the Cerrado region, and their impact on C stocks needs to be better understood. This subject has been addressed in a systematic review of the existing data in the literature, consisting of 63 articles from the Scopus database. Our review showed that the replacement of Cerrado vegetation by crop species decreased the original soil C stocks (depth 0-30 cm) by 73%, with a peak loss of 61.14 Mg ha-1. However, when analyzing the 0-100 cm layer, 52.4% of the C stock data were higher under cultivated areas than in native Cerrado soils, with a peak gain of 93.6 Mg ha-1. The agricultural practices implemented in the Brazilian Cerrado make low-carbon agriculture in this biome possible.

5.
Sci Total Environ ; 618: 1572-1582, 2018 Mar 15.
Article in English | MEDLINE | ID: mdl-29054618

ABSTRACT

In the Brazilian Cerrado, despite the increasing adoption of no-till systems, there are still extended areas under conventional soil management systems that reduce soil carbon (C) and nitrogen (N) stocks and increase the emissions of greenhouse gases, such as nitrous oxide (N2O). Conservation agroecosystems, such as no-till, have been proposed as a strategy to mitigate agriculture-induced climatic changes through reductions in N2O emissions. However, the relationship between organic matter and N2O emissions from soils under different agroecosystems is not yet clear. This study hypothesized that agroecosystems under no-till promote an accumulation of labile and stable SOM fractions along with a reduction of N2O emissions. This study evaluated the effects of crop-rotation agroecosystems: i) on C and N pools and labile and stable SOM fractions; ii) on cumulative N2O emissions; and iii) on the relationships between SOM fractions and N2O emissions. The agricultural systems consisted of: (I) soybean followed by sorghum under no-tillage (NT1); (II) maize followed by pigeon pea under no-tillage (NT2); (III) soybean under conventional tillage followed by fallow soil (CT); (IV) and native Cerrado (CER). After CT for 18years, following the replacement of CER, the soil C stock in the 0-20cm layer was reduced by 0.64tha-1year-1. The no-till systems were more efficient in accumulating labile and stable C fractions with values close to those observed under CER, and were directly related to lower soil N2O emissions. The cumulative pattern of N2O emissions was inverse to that of the following SOM fractions: microbial biomass carbon, permanganate-oxidizable carbon, particulate organic carbon, inert carbon, and humic substances. Based on principal component analysis, the CT was generally separated from the other land use systems. This separation was strongly influenced by the low C contents in the different SOM fractions and higher N2O emissions promoted by the CT.

SELECTION OF CITATIONS
SEARCH DETAIL
...