Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Monit Assess ; 190(8): 448, 2018 Jul 04.
Article in English | MEDLINE | ID: mdl-29974326

ABSTRACT

Three-stage sequential extraction BCR was applied to surface sediments from the west part of Guanabara Bay to assess the mobility of Zn, Cu, Pb, Ni, Cr, and Mn. Results were satisfactory for the analysis of certificate standard material (BCR 701), with recoveries between 71 (Cu) and 123% (Cr). Evaluation of organic matter composition classified the area as eutrophic (CHO:PRT > 1), with aged organic detritus at some stations. Zn exhibited by far the greatest bioavailability, with 43.49% of its concentrations associated with the exchangeable fraction. Cu and Cr showed stronger affinity for organic matter, with 51.18 and 48.73% of their concentrations, respectively, bounded to the oxidizable fraction. Pb presented higher concentrations in the reducible fraction (45.41%). The strongest lithogenic contribution was shown by Ni (31.91%) and Mn (35.44%). PCA clearly showed the determinant role of organic matter and fine sediments in the distribution of metals in the study area and also a common source for these elements, with the exception of Cu. Risk Assessment Code (RAC) established Zn as the most concerning element in the study area. The decreasing mobility order, based on the sum of the three extractable fractions of BCR, was Pb > Cu > Cr > Zn > Ni > Mn. The comparison of the results with sediments quality guidelines (SQG) proved fractionation to be mandatory in the evaluation of effective ecological risk concerning trace elements in sediments.


Subject(s)
Environmental Monitoring , Geologic Sediments/chemistry , Metals, Heavy/analysis , Water Pollutants, Chemical/analysis , Bays/chemistry , Brazil , Chemical Fractionation , Ecology , Geologic Sediments/analysis , Risk Assessment , Trace Elements/analysis
2.
Springerplus ; 5(1): 1406, 2016.
Article in English | MEDLINE | ID: mdl-27610325

ABSTRACT

The Guapimirim estuary is the main tributary of Guanabara bay and is located in the northeast portion. Although it is protected, this estuary has been experiencing strong anthropogenic pressure, which has led to changes in the natural characteristics. Large amounts of sewage are dumped into the bay through tributaries, thereby changing the water and bottom sediment quality. One of the main elements of sewage is phosphorus. Despite its importance to life, a high concentration of this nutrient in the environment can result in eutrophication. This work describes the phosphorus distribution in its different fractions in the bottom sediment at 16 stations located in the main channel of the Guapimirim estuary. These results are correlated with data on grain size, organic matter and calcium carbonate content in the bottom sediment and with physicochemical parameters of the bottom water. The grain size decreases toward the mouth of the estuary, whereas the organic matter and carbonate content increase. The salinity increases significantly at 3.5 km upstream from the mouth, where there is also a notable increase in fine sediments; the same site is the mean position of the salinity front. The temperature and pH increase in the same direction. The Pinorg-total ranges between 3.18 and 7.13 µmol g(-1), increasing toward the mouth. The same trend is observed for the other phosphorus fractions P-Ca, P-Fe and P-f.a., which range from 0.68 to 1.91, 0.79 to 1.71 and 0.03 to 0.93 µmol g(-1), respectively. The P-Ca and P-Fe fractions are the most representative in the Pinorg-total, occurring at 26.3 and 26.0 %, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL
...