Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mycotoxin Res ; 33(4): 285-295, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28730564

ABSTRACT

The waste management industry is an important employer, and exposure of waste-handling workers to microorganisms is considered an occupational health problem. Besides fungal contamination, it is important to consider the co-occurrence of mycotoxins in this setting. Forklifts with closed cabinet and air conditioner are commonly used in waste industry to transport waste and other products within the facilities, possibly increasing the risk of exposure under certain conditions. The aim of this study was to assess the fungal contamination and mycotoxin levels in filters from the air conditioning system of forklift cabinets, as an indicator to assess occupational exposure of the drivers working in a waste sorting facility. Cytotoxicity was also assessed to understand and characterize the toxicity of the complex mixtures as present in the forklift filters. Aqueous extracts of filters from 11 vehicles were streaked onto 2% malt extract agar (MEA) with chloramphenicol (0.05 g/L) media, and in dichloran glycerol (DG18) agar-based media for morphological identification of the mycobiota. Real-time quantitative PCR amplification of genes from Aspergillus sections Fumigati, Flavi, Circumdati, and Versicolores was also performed. Mycotoxins were analyzed using LC-MS/MS system. Cytotoxicity of filter extracts was analyzed by using a MTT cell culture test. Aspergillus species were found most frequently, namely Aspergillus sections Circumdati (MEA 48%; DG18 41%) and Nigri (MEA 32%; DG18 17.3%). By qPCR, only Aspergillus section Fumigati species were found, but positive results were obtained for all assessed filters. No mycotoxins were detected in aqueous filter extracts, but most extracts were highly cytotoxic (n = 6) or medium cytotoxic (n = 4). Although filter service life and cytotoxicity were not clearly correlated, the results suggest that observing air conditioner filter replacement frequency may be a critical aspect to avoid worker's exposure. Further research is required to check if the environmental conditions as present in the filters could allow the production of mycotoxins and their dissemination in the cabinet during the normal use of the vehicles.


Subject(s)
Air Filters/microbiology , Air Pollutants, Occupational/analysis , Environmental Monitoring , Fungi/chemistry , Mycotoxins/analysis , Occupational Exposure/adverse effects , Air Pollutants, Occupational/toxicity , Animals , Aspergillus/chemistry , Cell Line , Cell Survival/drug effects , Linear Models , Mycotoxins/toxicity , Swine , Waste Disposal Facilities
2.
J Toxicol Environ Health A ; 80(13-15): 719-728, 2017.
Article in English | MEDLINE | ID: mdl-28548622

ABSTRACT

Studies on the microbiology of coffee cherries and beans have shown that the predominant toxigenic fungal genera (Aspergillus and Penicillium) are natural coffee contaminants. The aim of this study was to investigate the distribution of fungi in Coffea arabica L. (Arabica coffee) and Coffea canephora L. var. robusta (Robusta coffee) green coffee samples obtained from different sources at the pre-roasting stage. Twenty-eight green coffee samples from different countries of origin (Brazil, Timor, Honduras, Angola, Vietnam, Costa Rica, Colombia, Guatemala, Nicaragua, India, and Uganda) were evaluated. The fungal load in the contaminated samples ranged from 0 to 12330 colony forming units (CFU)/g, of which approximately 67% presented contamination levels below 1500 CFU/g, while 11% exhibited intermediate contamination levels between 1500 and 3000 CFU/g. Contamination levels higher than 3000 CFU/g were found in 22% of contaminated coffee samples. Fifteen different fungi were isolated by culture-based methods and Aspergillus species belonging to different sections (complexes). The predominant Aspergillus section detected was Nigri (39%), followed by Aspergillus section Circumdati (29%). Molecular analysis detected the presence of Aspergillus sections Fumigati and Circumdati. The% coffee samples where Aspergillus species were identified by culture-based methods were 96%. Data demonstrated that green coffee beans samples were contaminated with toxigenic fungal species. Since mycotoxins may be resistant to the roasting process, this suggests possible exposure to mycotoxins through consumption of coffee. Further studies need to be conducted to provide information on critical points of coffee processing, such that fungal contamination may be reduced or eliminated and thus exposure to fungi and mycotoxins through coffee handling and consumption be prevented.


Subject(s)
Coffee/microbiology , Food Microbiology , Aspergillus , Penicillium , Real-Time Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...