Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Dalton Trans ; 53(20): 8563-8575, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38682235

ABSTRACT

The Oxygen Evolution Reaction (OER) is crucial in various processes such as hydrogen production via water splitting. Several electrocatalysts, including metal oxides, have been evaluated to enhance the reaction efficiency. Zeolitic Imidazolate Framework-67 (ZIF-67) has been employed as a precursor to produce Co3O4, showing high OER activity. Additionally, the formation of composites with carbon-based materials improves the activity of these materials. Thus, this work focuses on synthesizing ZIF-67 and commercial activated carbon (AC) composites, which were used as precursors to obtain Co3O4/C electrocatalysts by calculating ZIF-67/CX (X = 10, 30, and 50, the mass percentage of AC). The obtained materials were thoroughly characterized by employing X-ray powder diffraction (XRD), confirming the cobalt oxide structure with a sphere-like morphology as observed in the TEM images. The presence of oxygen vacancies was confirmed by infrared spectroscopy and EPR measurements. The electrocatalytic performance in the OER was investigated by linear sweep voltammetry (LSV), which revealed an overpotential of 325 mV at 10 mA cm-2 and a Tafel slope value of 65.32 mV dec-1 for Co3O4/C10, superior in activity to several previously reported studies in the literature and electrochemical stability of up to 8 hours. The reduced value of charge transfer resistance, high double-layer capacitance, and the presence of Co3+ ions justify the superior performance of the Co3O4/C10 electrocatalyst.

2.
Sensors (Basel) ; 23(10)2023 May 09.
Article in English | MEDLINE | ID: mdl-37430511

ABSTRACT

Sub-GHz communication provides long-range coverage with low power consumption and reduced deployment cost. LoRa (Long-Range) has emerged, among existing LPWAN (Low Power Wide Area Networks) technologies, as a promising physical layer alternative to provide ubiquitous connectivity to outdoor IoT devices. LoRa modulation technology supports adapting transmissions based on parameters such as carrier frequency, channel bandwidth, spreading factor, and code rate. In this paper, we propose SlidingChange, a novel cognitive mechanism to support the dynamic analysis and adjustment of LoRa network performance parameters. The proposed mechanism uses a sliding window to smooth out short-term variations and reduce unnecessary network re-configurations. To validate our proposal, we conducted an experimental study to evaluate the performance concerning the Signal-to-Noise Ratio (SNR) parameter of our SlidingChange against InstantChange, an intuitive mechanism that considers immediate performance measurements (parameters) for re-configuring the network. The SlidingChange is compared with LR-ADR too, a state-of-the-art-related technique based on simple linear regression. The experimental results obtained from a testbed scenario demonstrated that the InstanChange mechanism improved the SNR by 4.6%. When using the SlidingChange mechanism, the SNR was around 37%, while the network reconfiguration rate was reduced by approximately 16%.

3.
Sci Rep ; 11(1): 3575, 2021 02 11.
Article in English | MEDLINE | ID: mdl-33574385

ABSTRACT

Hox genes are key developmental regulators that are involved in establishing morphological features during animal ontogeny. They are commonly expressed along the anterior-posterior axis in a staggered, or collinear, fashion. In mollusks, the repertoire of body plans is widely diverse and current data suggest their involvement during development of landmark morphological traits in Conchifera, one of the two major lineages that comprises those taxa that originated from a uni-shelled ancestor (Monoplacophora, Gastropoda, Cephalopoda, Scaphopoda, Bivalvia). For most clades, and bivalves in particular, data on Hox gene expression throughout ontogeny are scarce. We thus investigated Hox expression during development of the quagga mussel, Dreissena rostriformis, to elucidate to which degree they might contribute to specific phenotypic traits as in other conchiferans. The Hox/ParaHox complement of Mollusca typically comprises 14 genes, 13 of which are present in bivalve genomes including Dreissena. We describe here expression of 9 Hox genes and the ParaHox gene Xlox during Dreissena development. Hox expression in Dreissena is first detected in the gastrula stage with widely overlapping expression domains of most genes. In the trochophore stage, Hox gene expression shifts towards more compact, largely mesodermal domains. Only few of these domains can be assigned to specific developing morphological structures such as Hox1 in the shell field and Xlox in the hindgut. We did not find traces of spatial or temporal staggered expression of Hox genes in Dreissena. Our data support the notion that Hox gene expression has been coopted independently, and to varying degrees, into lineage-specific structures in the respective conchiferan clades. The non-collinear mode of Hox expression in Dreissena might be a result of the low degree of body plan regionalization along the bivalve anterior-posterior axis as exemplified by the lack of key morphological traits such as a distinct head, cephalic tentacles, radula apparatus, and a simplified central nervous system.


Subject(s)
Bivalvia/genetics , Evolution, Molecular , Genes, Homeobox/genetics , Homeodomain Proteins/genetics , Animals , Bivalvia/physiology , Body Patterning/genetics , Gene Expression Regulation/genetics , Genome/genetics , Mollusca/classification , Mollusca/genetics , Mollusca/physiology , Morphogenesis/genetics , Phylogeny
4.
Colloids Surf B Biointerfaces ; 198: 111471, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33257159

ABSTRACT

Recently, zinc-based materials have gained immense attention as antimicrobial agents. In this study, zinc-doped mesoporous hydroxyapatites (HAps) with various Zn contents were prepared by co-precipitation using a phosphoprotein as the porous template. The use of the phosphoprotein as the porous template resulted in the formation of zinc-doped mesoporous HAps (mHAps) with large pores and specific surface area (182 m2 g-1), as indicated by the nitrogen adsorption/desorption measurements. The formation of the zinc-doped HAps was confirmed by various analytical techniques such as X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy. The biomaterials prepared in this study were used as antimicrobial agents against gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli) bacteria. The Zn2%-mHAp sample showed the maximum bacterial inhibitory concentrations of 50 ± 5% and 77 ± 5% for the Gram-positive and Gram-negative bacteria, respectively. The antibacterial activity of the mHAp samples depended strongly on their Zn2+ content. Thus, the use of a biotemplate and Zn2+ ions is an efficient approach for the formation of novel HAp-based biomaterials with promising antibacterial properties. This synthesis approach will pave a new pathway for the functionalization of other materials for different biomedical applications.


Subject(s)
Anti-Bacterial Agents , Hydroxyapatites , Anti-Bacterial Agents/pharmacology , Gram-Negative Bacteria , Gram-Positive Bacteria , Microbial Sensitivity Tests , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction , Zinc
5.
Article in English | MEDLINE | ID: mdl-32695765

ABSTRACT

In this communication, it was evaluated the production of fatty acid ethyl ester (FAAE) from the free fatty acids of babassu oil catalyzed by lipase from Rhizomucor miehei (RML) immobilized on magnetic nanoparticles (MNP) coated with 3-aminopropyltriethoxysilane (APTES), Fe3O4@APTES-RML or RML-MNP for short. MNPs were prepared by co-precipitation coated with 3-aminopropyltriethoxysilane and used as a support to immobilize RML (immobilization yield: 94.7 ± 1.0%; biocatalyst activity: 341.3 ± 1.2 U p -NPB/g), which were also activated with glutaraldehyde and then used to immobilize RML (immobilization yield: 91.9 ± 0.2%; biocatalyst activity: 199.6 ± 3.5 U p -NPB/g). RML-MNP was characterized by X-Ray Powder Diffraction (XRPD), Fourier Transform-Infrared (FTIR) spectroscopy and Scanning Electron Microscope (SEM), proving the incorporation and immobilization of RML on the APTES matrix. In addition, the immobilized biocatalyst presented at 60°C a half-life 16-19 times greater than that of the soluble lipase in the pH range 5-10. RML and RML-MNP showed higher activity at pH 7; the immobilized enzyme was more active than the free enzyme in the pH range (5-10) analyzed. For the production of fatty acid ethyl ester, under optimal conditions [40°C, 6 h, 1:1 (FFAs/alcohol)] determined by the Taguchi method, it was possible to obtain conversion of 81.7 ± 0.7% using 5% of RML-MNP.

6.
J Chem Ecol ; 46(8): 699-706, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32533351

ABSTRACT

It is known that plant and associated bacteria coevolved, but just now the roles of chemical signaling compounds in these intricate relationships have been systematically studied. Many Gram-negative bacteria produce N-acyl-L-homoserine lactones (AHL), chemical signals used in quorum-sensing bacterial communications mechanisms. In recent years, it has been shown that these compounds may also influence the development of plants, acting as allelochemicals, in still not well understood eukaryot-prokaryot interactions. In the present work, a quorum-sensing molecule produced by the tomato associated bacterium Pseudomonas sp. was characterized and its effects on germination and growth of tomato seedlings were accessed. The chemical study of the bacterium extract led to the identification of N-3-oxo-dodecanoyl-L-homoserine lactone (1), using gas chromatography coupled to electron impact mass spectrometry (GC-MS), and ultra-high resolution Qq-time-of-flight mass spectrometry (UHR-QqTOF-MS) equipped with an electrospray ionization source (ESI). The synthetic compound was tested at different concentrations in tomato to evaluate its effects on seed germination and seedlings root growth. Inhibition of tomato seed germination and root growth were observed in the presence of micromolar concentrations of the compound 1. Scanning electron microscopy evidenced morphological alterations on roots in the presence of the compound, with reduction of growth, impaired root hairs development and cracks in the rhizodermis.


Subject(s)
Acyl-Butyrolactones/metabolism , Germination/physiology , Pseudomonas/chemistry , Solanum lycopersicum/physiology , Solanum lycopersicum/growth & development , Solanum lycopersicum/microbiology , Plant Roots/growth & development
7.
Inorg Chem ; 59(11): 7666-7680, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32338503

ABSTRACT

The impact of Eu3+ doping at the Sr2+ and Sn4+ sites in SrSnO3 on its structural and electronic properties was studied and correlated with the photocatalytic efficiency. The compounds were synthesized using a modified Pechini method. Refinement of the synchrotron X-ray diffraction (S-XRD) data showed that the samples had an orthorhombic Pbnm symmetry. The incorporation of Eu into the lattice led to increased short- and long-range disorder, inducing additional distortion in the SnO6. XANES measurements revealed that mixed Eu valences (Eu3+ and Eu2+) were present in Eu-doped samples, and DFT calculations confirmed the presence of these ions at Sr2+/Sr4+ sites in the SrSnO3, resulting in changes in the electronic behavior. The catalytic performance toward Remazol yellow dye photodegradation and the catalysts' surface properties were also evaluated. The catalytic efficiency followed the order of Sr(Sn0.99Eu0.01)SnO3 > (Sr0.99Eu0.01)SnO3 > SrSnO3. The order was clearly related to selected-site doping that changed the degree of the inter- and intraoctahedral distortion and the introduction of different Eu midgap states, which apparently favor charge separation upon photoexcitation during photocatalysis. The results shown here are of great importance to the functionalization of SrSnO3 and other perovskite materials by lanthanoid ions, especially Eu3+, for effective applications as photocatalysts.

8.
PeerJ ; 8: e7905, 2020.
Article in English | MEDLINE | ID: mdl-31942248

ABSTRACT

BACKGROUND: The co-inoculation of soybean with Bradyrhizobium and other plant growth-promoting rhizobacteria (PGPR) is considered a promising technology. However, there has been little quantitative analysis of the effects of this technique on yield variables. In this context, the present study aiming to provide a quantification of the effects of the co-inoculation of Bradyrhizobium and PGPR on the soybean crop using a meta-analysis approach. METHODS: A total of 42 published articles were examined, all of which considered the effects of co-inoculation of PGPR and Bradyrhizobium on the number of nodules, nodule biomass, root biomass, shoot biomass, shoot nitrogen content, and grain yield of soybean. We also determined whether the genus of the PGPR used as co-inoculant, as well as the experimental conditions, altered the effect size of the PGPR. RESULTS: The co-inoculation technology resulted in a significant increase in nodule number (11.40%), nodule biomass (6.47%), root biomass (12.84%), and shoot biomass (6.53%). Despite these positive results, no significant increase was observed in shoot nitrogen content and grain yield. The response of the co-inoculation varied according to the PGPR genus used as co-inoculant, as well as with the experimental conditions. In general, the genera Azospirillum, Bacillus, and Pseudomonas were more effective than Serratia. Overall, the observed increments were more pronounced under pot than that of field conditions. Collectively, this study summarize that co-inoculation improves plant development and increases nodulation, which may be important in overcoming nutritional limitations and potential stresses during the plant growth cycle, even though significant increases in grain yield have not been evidenced by this data meta-analysis.

9.
Sci Total Environ ; 609: 807-814, 2017 Dec 31.
Article in English | MEDLINE | ID: mdl-28768213

ABSTRACT

The two-dimensional fractal dimension (Df) of large aggregates of kaolin (>540µm) during the shear flocculation process for kaolin solution was investigated using non-intrusive in situ image-based acquisition system. Separate experiments were also carried out for three different sized sub-ranges of large aggregates (0.540-1.125mm; 1.125-1.750mm; 1.750-2.375mm). Digital images were taken at a frequency of 10Hz for 10s for each different pairs of gradients of velocity (Gf) of 20 and 60s-1 and flocculation times of 2; 3; 4; 5; 10; 20; 30; 60; 120 and 180min. For the same conditions, particle size distribution (PSD) was also determined. Under the investigated conditions, the lowest Gf produced the greatest Df (1.69) at a flocculation time of 30min for the whole range of aggregates. Also, the evolution of the longest length of aggregate (l) and Df with time, showed that the dynamic steady-state was reached at different times for each shear rate and l ranges. However, Df varied for each size sub-range (ca. 1.1 to 1.8). Finally, the behavior of the aggregate structure may be understood by the predominance of different aggregation mechanisms such as cluster-cluster for Gf of 60s-1 and particle-cluster for Gf of 20s-1.

10.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 73(Pt 3): 389-398, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-28572549

ABSTRACT

In this work we synthesized BaTaO2N and SrTaO2N using a two-step high-temperature solid-state reaction method and analysed the structural distortions, relative to the ideal cubic perovskite structure, according to group theory. From a complete distortion analysis/refinement using high-resolution neutron diffraction data in the temperature range 8 to 613 K, we identified tetragonal structures for BaTaO2N [P4/mmm (No. 123)] and SrTaO2N [I4/mcm (No. 140)]. In contrast to an anion-disordered cubic perovskite (Pm \overline{3}m No. 221) with Ta at the cell center, both systems show a site preference for oxygen anions in the two opposite corners (along the c axis) of the Ta-O/N octahedra rather than the four square corners in the ab plane (Γ3+ occupancy distortion), which induces a tetragonal elongation of the unit cell with the c axis being longer than the a axis. A further Ta-O/N octahedra displacement [R5-(a,0,0), rotation about the c axis] distortion was observed in SrTaO2N. This distortion mode is accompanied by an increased unit-cell distortion that decreases as the temperature increases. Ultimately a second-order phase transition caused by the loss of the R5-(a,0,0) mode was observed at 400-450 K.

11.
Dalton Trans ; 46(9): 2974-2980, 2017 Feb 28.
Article in English | MEDLINE | ID: mdl-28198491

ABSTRACT

The temperature dependences of the structures of three polytypes of BaRuO3 have been investigated between room temperature and 1000 °C using high resolution synchrotron X-ray diffraction. The structural studies reveal a systematic decrease of the Ru-Ru distance as the pressure required to prepare the polytype increases. The O-O distance across the shared face increases as the Ru-Ru separation decreases. The 9R and 4H polytypes undergo unexceptional changes with increasing temperature. In 6H-BaRuO3 there is an apparent increase in the Ru-Ru interaction at around 650 °C and a concurrent reduction in the O-O distance, indicating an anomalous strengthening of the Ru-Ru interactions upon heating.

12.
Front Microbiol ; 7: 1572, 2016.
Article in English | MEDLINE | ID: mdl-27774087

ABSTRACT

Gluconacetobacter diazotrophicus is a beneficial nitrogen-fixing endophyte found in association with sugarcane plants and other important crops. Beneficial effects of G. diazotrophicus on sugarcane growth and productivity have been attributed to biological nitrogen fixation process and production of phytohormones especially indole-3-acetic acid (IAA); however, information about the biosynthesis and function of IAA in G. diazotrophicus is still scarce. Therefore, the aim of this work was to identify genes and pathways involved in IAA biosynthesis in this bacterium. In our study, the screening of two independent Tn5 mutant libraries of PAL5T strain using the Salkowski colorimetric assay revealed two mutants (Gdiaa34 and Gdiaa01), which exhibited 95% less indolic compounds than the parental strain when grown in LGIP medium supplemented with L-tryptophan. HPLC chromatograms of the wild-type strain revealed the presence of IAA and of the biosynthetic intermediates indole-3-pyruvic acid (IPyA) and indole-3-lactate (ILA). In contrast, the HPLC profiles of both mutants showed no IAA but only a large peak of non-metabolized tryptophan and low levels of IPyA and ILA were detected. Molecular characterization revealed that Gdiaa01 and Gdiaa34 mutants had unique Tn5 insertions at different sites within the GDI2456 open read frame, which is predicted to encode a L-amino acid oxidase (LAAO). GDI2456 (lao gene) forms a cluster with GDI2455 and GDI2454 ORFs, which are predicted to encode a cytochrome C and an RidA protein, respectively. RT-qPCR showed that transcript levels of lao. cccA, and ridA genes were reduced in the Gdiaa01 as compared to PAL5T. In addition, rice plants inoculated with Gdiaa01 showed significantly smaller root development (length, surface area, number of forks and tips) than those plants inoculated with PAL5T. In conclusion, our study demonstrated that G. diazotrophicus PAL5T produces IAA via the IPyA pathway in cultures supplemented with tryptophan and provides evidence for the involvement of an L-amino acid oxidase gene cluster in the biosynthesis of IAA. Furthermore, we showed that the mutant strains with reduction in IAA biosynthesis ability, in consequence of the lower transcription levels of genes of the lao cluster, had remarkable effects on development of rice roots.

13.
J Zool Syst Evol Res ; 54(3): 177-181, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27397971

ABSTRACT

A putative new limpet species (Patellogastropoda) from the Sea of Japan is revealed by molecular genetic analyses using the mitochondrial markers 16S rRNA and cytochrome c oxidase subunit I (CO1), as well as the DNA marker 18S rRNA. Our data indicate that the limpet, collected in the Peter the Great Bay (Russian Federation), is not, as its morphology suggests, the Japanese species Lottia kogamogai Sasaki and Okutani, 1994, and might also hint towards another putative species complex in the Sea of Japan. The different currents between the Far East Asian mainland (cold, subpolar jet running southwards) and the Japanese archipelago (warm, subtropical jet running northwards) are likely to act as a barrier that has a substantial influence on species distribution in these waters. Accordingly, our results indicate that it is about time for a revision of patellogastropod species with a reported distribution in Japanese and Far Eastern Russian waters by an integrative approach using molecular genetic and morphological characters. The species investigated herein is referred to as Lottia cf. kogamogai until it is morphologically re-examined and compared with primary type specimens of known species.

14.
Front Microbiol ; 7: 269, 2016.
Article in English | MEDLINE | ID: mdl-26973638

ABSTRACT

This work reports the development of GenSeed-HMM, a program that implements seed-driven progressive assembly, an approach to reconstruct specific sequences from unassembled data, starting from short nucleotide or protein seed sequences or profile Hidden Markov Models (HMM). The program can use any one of a number of sequence assemblers. Assembly is performed in multiple steps and relatively few reads are used in each cycle, consequently the program demands low computational resources. As a proof-of-concept and to demonstrate the power of HMM-driven progressive assemblies, GenSeed-HMM was applied to metagenomic datasets in the search for diverse ssDNA bacteriophages from the recently described Alpavirinae subfamily. Profile HMMs were built using Alpavirinae-specific regions from multiple sequence alignments (MSA) using either the viral protein 1 (VP1; major capsid protein) or VP4 (genome replication initiation protein). These profile HMMs were used by GenSeed-HMM (running Newbler assembler) as seeds to reconstruct viral genomes from sequencing datasets of human fecal samples. All contigs obtained were annotated and taxonomically classified using similarity searches and phylogenetic analyses. The most specific profile HMM seed enabled the reconstruction of 45 partial or complete Alpavirinae genomic sequences. A comparison with conventional (global) assembly of the same original dataset, using Newbler in a standalone execution, revealed that GenSeed-HMM outperformed global genomic assembly in several metrics employed. This approach is capable of detecting organisms that have not been used in the construction of the profile HMM, which opens up the possibility of diagnosing novel viruses, without previous specific information, constituting a de novo diagnosis. Additional applications include, but are not limited to, the specific assembly of extrachromosomal elements such as plastid and mitochondrial genomes from metagenomic data. Profile HMM seeds can also be used to reconstruct specific protein coding genes for gene diversity studies, and to determine all possible gene variants present in a metagenomic sample. Such surveys could be useful to detect the emergence of drug-resistance variants in sensitive environments such as hospitals and animal production facilities, where antibiotics are regularly used. Finally, GenSeed-HMM can be used as an adjunct for gap closure on assembly finishing projects, by using multiple contig ends as anchored seeds.

15.
J Strength Cond Res ; 26(8): 2174-9, 2012 Aug.
Article in English | MEDLINE | ID: mdl-21997454

ABSTRACT

The objective of this study was to investigate the influence of active static stretching on the maximal isometric muscle strength (maximal voluntary contraction [MVC]) and rate of force development (RFD) determined within time intervals of 30, 50, 100, and 200 milliseconds relative to the onset of muscle contraction. Fifteen men (aged 21.3 ± 2.4 years) were submitted on different days to the following tests: (a) familiarization session to the isokinetic dynamometer; (b) 2 maximal isometric contractions for knee extensors in the isokinetic dynamometer to determine MVC and RFD (control); and (c) 2 active static stretching exercises for the dominant leg extensors (10 × 30 seconds for each exercise with a 20-second rest interval between bouts). After stretching, the isokinetic test was repeated (poststretching). Conditions 2 and 3 were performed in random order. The RFD was considered as the mean slope of the moment-time curve at time intervals of 0-30, 0-50, 0-100; 0-150; and 0200 milliseconds relative to the onset of muscle contraction. The MVC was reduced after stretching (285 ± 59 vs. 271 ± 56 N · m, p < 0.01). The RFD at intervals of 0-30, 0-50, and 0-100 milliseconds was unchanged after stretching (p > 0.05). However, the RFD measured at intervals of 0-150 and 0-200 milliseconds was significantly lower after stretching (p < 0.01). It can be concluded that explosive muscular actions of a very short duration (<100 milliseconds) seem less affected by active static stretching when compared with actions using maximal muscle strength.


Subject(s)
Isometric Contraction/physiology , Muscle Strength/physiology , Muscle Stretching Exercises/methods , Adolescent , Adult , Humans , Knee/physiology , Leg/physiology , Male , Muscle, Skeletal/physiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...